Evaluate
\frac{216}{55}\approx 3.927272727
Factor
\frac{2 ^ {3} \cdot 3 ^ {3}}{5 \cdot 11} = 3\frac{51}{55} = 3.9272727272727272
Share
Copied to clipboard
\frac{\frac{1}{1}+\frac{7}{5}}{\frac{1}{6}+\frac{4}{9}}
Divide 1 by 1 to get 1.
\frac{1+\frac{7}{5}}{\frac{1}{6}+\frac{4}{9}}
Divide 1 by 1 to get 1.
\frac{\frac{5}{5}+\frac{7}{5}}{\frac{1}{6}+\frac{4}{9}}
Convert 1 to fraction \frac{5}{5}.
\frac{\frac{5+7}{5}}{\frac{1}{6}+\frac{4}{9}}
Since \frac{5}{5} and \frac{7}{5} have the same denominator, add them by adding their numerators.
\frac{\frac{12}{5}}{\frac{1}{6}+\frac{4}{9}}
Add 5 and 7 to get 12.
\frac{\frac{12}{5}}{\frac{3}{18}+\frac{8}{18}}
Least common multiple of 6 and 9 is 18. Convert \frac{1}{6} and \frac{4}{9} to fractions with denominator 18.
\frac{\frac{12}{5}}{\frac{3+8}{18}}
Since \frac{3}{18} and \frac{8}{18} have the same denominator, add them by adding their numerators.
\frac{\frac{12}{5}}{\frac{11}{18}}
Add 3 and 8 to get 11.
\frac{12}{5}\times \frac{18}{11}
Divide \frac{12}{5} by \frac{11}{18} by multiplying \frac{12}{5} by the reciprocal of \frac{11}{18}.
\frac{12\times 18}{5\times 11}
Multiply \frac{12}{5} times \frac{18}{11} by multiplying numerator times numerator and denominator times denominator.
\frac{216}{55}
Do the multiplications in the fraction \frac{12\times 18}{5\times 11}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}