Evaluate
-\frac{1}{2}=-0.5
Factor
-\frac{1}{2} = -0.5
Share
Copied to clipboard
\frac{\frac{\frac{3}{3}+\frac{1}{3}}{1+\frac{2}{2-\frac{1}{2}}}+\frac{2-\frac{1}{3}}{1-\frac{2}{1+\frac{1}{2}}}}{7+\frac{1}{1-\frac{1}{1+\frac{7}{6}}}}
Convert 1 to fraction \frac{3}{3}.
\frac{\frac{\frac{3+1}{3}}{1+\frac{2}{2-\frac{1}{2}}}+\frac{2-\frac{1}{3}}{1-\frac{2}{1+\frac{1}{2}}}}{7+\frac{1}{1-\frac{1}{1+\frac{7}{6}}}}
Since \frac{3}{3} and \frac{1}{3} have the same denominator, add them by adding their numerators.
\frac{\frac{\frac{4}{3}}{1+\frac{2}{2-\frac{1}{2}}}+\frac{2-\frac{1}{3}}{1-\frac{2}{1+\frac{1}{2}}}}{7+\frac{1}{1-\frac{1}{1+\frac{7}{6}}}}
Add 3 and 1 to get 4.
\frac{\frac{\frac{4}{3}}{1+\frac{2}{\frac{4}{2}-\frac{1}{2}}}+\frac{2-\frac{1}{3}}{1-\frac{2}{1+\frac{1}{2}}}}{7+\frac{1}{1-\frac{1}{1+\frac{7}{6}}}}
Convert 2 to fraction \frac{4}{2}.
\frac{\frac{\frac{4}{3}}{1+\frac{2}{\frac{4-1}{2}}}+\frac{2-\frac{1}{3}}{1-\frac{2}{1+\frac{1}{2}}}}{7+\frac{1}{1-\frac{1}{1+\frac{7}{6}}}}
Since \frac{4}{2} and \frac{1}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{\frac{4}{3}}{1+\frac{2}{\frac{3}{2}}}+\frac{2-\frac{1}{3}}{1-\frac{2}{1+\frac{1}{2}}}}{7+\frac{1}{1-\frac{1}{1+\frac{7}{6}}}}
Subtract 1 from 4 to get 3.
\frac{\frac{\frac{4}{3}}{1+2\times \frac{2}{3}}+\frac{2-\frac{1}{3}}{1-\frac{2}{1+\frac{1}{2}}}}{7+\frac{1}{1-\frac{1}{1+\frac{7}{6}}}}
Divide 2 by \frac{3}{2} by multiplying 2 by the reciprocal of \frac{3}{2}.
\frac{\frac{\frac{4}{3}}{1+\frac{2\times 2}{3}}+\frac{2-\frac{1}{3}}{1-\frac{2}{1+\frac{1}{2}}}}{7+\frac{1}{1-\frac{1}{1+\frac{7}{6}}}}
Express 2\times \frac{2}{3} as a single fraction.
\frac{\frac{\frac{4}{3}}{1+\frac{4}{3}}+\frac{2-\frac{1}{3}}{1-\frac{2}{1+\frac{1}{2}}}}{7+\frac{1}{1-\frac{1}{1+\frac{7}{6}}}}
Multiply 2 and 2 to get 4.
\frac{\frac{\frac{4}{3}}{\frac{3}{3}+\frac{4}{3}}+\frac{2-\frac{1}{3}}{1-\frac{2}{1+\frac{1}{2}}}}{7+\frac{1}{1-\frac{1}{1+\frac{7}{6}}}}
Convert 1 to fraction \frac{3}{3}.
\frac{\frac{\frac{4}{3}}{\frac{3+4}{3}}+\frac{2-\frac{1}{3}}{1-\frac{2}{1+\frac{1}{2}}}}{7+\frac{1}{1-\frac{1}{1+\frac{7}{6}}}}
Since \frac{3}{3} and \frac{4}{3} have the same denominator, add them by adding their numerators.
\frac{\frac{\frac{4}{3}}{\frac{7}{3}}+\frac{2-\frac{1}{3}}{1-\frac{2}{1+\frac{1}{2}}}}{7+\frac{1}{1-\frac{1}{1+\frac{7}{6}}}}
Add 3 and 4 to get 7.
\frac{\frac{4}{3}\times \frac{3}{7}+\frac{2-\frac{1}{3}}{1-\frac{2}{1+\frac{1}{2}}}}{7+\frac{1}{1-\frac{1}{1+\frac{7}{6}}}}
Divide \frac{4}{3} by \frac{7}{3} by multiplying \frac{4}{3} by the reciprocal of \frac{7}{3}.
\frac{\frac{4\times 3}{3\times 7}+\frac{2-\frac{1}{3}}{1-\frac{2}{1+\frac{1}{2}}}}{7+\frac{1}{1-\frac{1}{1+\frac{7}{6}}}}
Multiply \frac{4}{3} times \frac{3}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{4}{7}+\frac{2-\frac{1}{3}}{1-\frac{2}{1+\frac{1}{2}}}}{7+\frac{1}{1-\frac{1}{1+\frac{7}{6}}}}
Cancel out 3 in both numerator and denominator.
\frac{\frac{4}{7}+\frac{\frac{6}{3}-\frac{1}{3}}{1-\frac{2}{1+\frac{1}{2}}}}{7+\frac{1}{1-\frac{1}{1+\frac{7}{6}}}}
Convert 2 to fraction \frac{6}{3}.
\frac{\frac{4}{7}+\frac{\frac{6-1}{3}}{1-\frac{2}{1+\frac{1}{2}}}}{7+\frac{1}{1-\frac{1}{1+\frac{7}{6}}}}
Since \frac{6}{3} and \frac{1}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{4}{7}+\frac{\frac{5}{3}}{1-\frac{2}{1+\frac{1}{2}}}}{7+\frac{1}{1-\frac{1}{1+\frac{7}{6}}}}
Subtract 1 from 6 to get 5.
\frac{\frac{4}{7}+\frac{\frac{5}{3}}{1-\frac{2}{\frac{2}{2}+\frac{1}{2}}}}{7+\frac{1}{1-\frac{1}{1+\frac{7}{6}}}}
Convert 1 to fraction \frac{2}{2}.
\frac{\frac{4}{7}+\frac{\frac{5}{3}}{1-\frac{2}{\frac{2+1}{2}}}}{7+\frac{1}{1-\frac{1}{1+\frac{7}{6}}}}
Since \frac{2}{2} and \frac{1}{2} have the same denominator, add them by adding their numerators.
\frac{\frac{4}{7}+\frac{\frac{5}{3}}{1-\frac{2}{\frac{3}{2}}}}{7+\frac{1}{1-\frac{1}{1+\frac{7}{6}}}}
Add 2 and 1 to get 3.
\frac{\frac{4}{7}+\frac{\frac{5}{3}}{1-2\times \frac{2}{3}}}{7+\frac{1}{1-\frac{1}{1+\frac{7}{6}}}}
Divide 2 by \frac{3}{2} by multiplying 2 by the reciprocal of \frac{3}{2}.
\frac{\frac{4}{7}+\frac{\frac{5}{3}}{1-\frac{2\times 2}{3}}}{7+\frac{1}{1-\frac{1}{1+\frac{7}{6}}}}
Express 2\times \frac{2}{3} as a single fraction.
\frac{\frac{4}{7}+\frac{\frac{5}{3}}{1-\frac{4}{3}}}{7+\frac{1}{1-\frac{1}{1+\frac{7}{6}}}}
Multiply 2 and 2 to get 4.
\frac{\frac{4}{7}+\frac{\frac{5}{3}}{\frac{3}{3}-\frac{4}{3}}}{7+\frac{1}{1-\frac{1}{1+\frac{7}{6}}}}
Convert 1 to fraction \frac{3}{3}.
\frac{\frac{4}{7}+\frac{\frac{5}{3}}{\frac{3-4}{3}}}{7+\frac{1}{1-\frac{1}{1+\frac{7}{6}}}}
Since \frac{3}{3} and \frac{4}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{4}{7}+\frac{\frac{5}{3}}{-\frac{1}{3}}}{7+\frac{1}{1-\frac{1}{1+\frac{7}{6}}}}
Subtract 4 from 3 to get -1.
\frac{\frac{4}{7}+\frac{5}{3}\left(-3\right)}{7+\frac{1}{1-\frac{1}{1+\frac{7}{6}}}}
Divide \frac{5}{3} by -\frac{1}{3} by multiplying \frac{5}{3} by the reciprocal of -\frac{1}{3}.
\frac{\frac{4}{7}+\frac{5\left(-3\right)}{3}}{7+\frac{1}{1-\frac{1}{1+\frac{7}{6}}}}
Express \frac{5}{3}\left(-3\right) as a single fraction.
\frac{\frac{4}{7}+\frac{-15}{3}}{7+\frac{1}{1-\frac{1}{1+\frac{7}{6}}}}
Multiply 5 and -3 to get -15.
\frac{\frac{4}{7}-5}{7+\frac{1}{1-\frac{1}{1+\frac{7}{6}}}}
Divide -15 by 3 to get -5.
\frac{\frac{4}{7}-\frac{35}{7}}{7+\frac{1}{1-\frac{1}{1+\frac{7}{6}}}}
Convert 5 to fraction \frac{35}{7}.
\frac{\frac{4-35}{7}}{7+\frac{1}{1-\frac{1}{1+\frac{7}{6}}}}
Since \frac{4}{7} and \frac{35}{7} have the same denominator, subtract them by subtracting their numerators.
\frac{-\frac{31}{7}}{7+\frac{1}{1-\frac{1}{1+\frac{7}{6}}}}
Subtract 35 from 4 to get -31.
\frac{-\frac{31}{7}}{7+\frac{1}{1-\frac{1}{\frac{6}{6}+\frac{7}{6}}}}
Convert 1 to fraction \frac{6}{6}.
\frac{-\frac{31}{7}}{7+\frac{1}{1-\frac{1}{\frac{6+7}{6}}}}
Since \frac{6}{6} and \frac{7}{6} have the same denominator, add them by adding their numerators.
\frac{-\frac{31}{7}}{7+\frac{1}{1-\frac{1}{\frac{13}{6}}}}
Add 6 and 7 to get 13.
\frac{-\frac{31}{7}}{7+\frac{1}{1-1\times \frac{6}{13}}}
Divide 1 by \frac{13}{6} by multiplying 1 by the reciprocal of \frac{13}{6}.
\frac{-\frac{31}{7}}{7+\frac{1}{1-\frac{6}{13}}}
Multiply 1 and \frac{6}{13} to get \frac{6}{13}.
\frac{-\frac{31}{7}}{7+\frac{1}{\frac{13}{13}-\frac{6}{13}}}
Convert 1 to fraction \frac{13}{13}.
\frac{-\frac{31}{7}}{7+\frac{1}{\frac{13-6}{13}}}
Since \frac{13}{13} and \frac{6}{13} have the same denominator, subtract them by subtracting their numerators.
\frac{-\frac{31}{7}}{7+\frac{1}{\frac{7}{13}}}
Subtract 6 from 13 to get 7.
\frac{-\frac{31}{7}}{7+1\times \frac{13}{7}}
Divide 1 by \frac{7}{13} by multiplying 1 by the reciprocal of \frac{7}{13}.
\frac{-\frac{31}{7}}{7+\frac{13}{7}}
Multiply 1 and \frac{13}{7} to get \frac{13}{7}.
\frac{-\frac{31}{7}}{\frac{49}{7}+\frac{13}{7}}
Convert 7 to fraction \frac{49}{7}.
\frac{-\frac{31}{7}}{\frac{49+13}{7}}
Since \frac{49}{7} and \frac{13}{7} have the same denominator, add them by adding their numerators.
\frac{-\frac{31}{7}}{\frac{62}{7}}
Add 49 and 13 to get 62.
-\frac{31}{7}\times \frac{7}{62}
Divide -\frac{31}{7} by \frac{62}{7} by multiplying -\frac{31}{7} by the reciprocal of \frac{62}{7}.
\frac{-31\times 7}{7\times 62}
Multiply -\frac{31}{7} times \frac{7}{62} by multiplying numerator times numerator and denominator times denominator.
\frac{-31}{62}
Cancel out 7 in both numerator and denominator.
-\frac{1}{2}
Reduce the fraction \frac{-31}{62} to lowest terms by extracting and canceling out 31.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}