Evaluate
\frac{125}{96}\approx 1.302083333
Factor
\frac{5 ^ {3}}{2 ^ {5} \cdot 3} = 1\frac{29}{96} = 1.3020833333333333
Share
Copied to clipboard
\frac{\frac{\frac{2}{2}+\frac{1}{2}}{3}+\frac{1-\frac{1}{3}}{2}}{\frac{\frac{2\times 5+1}{5}}{\frac{5}{6}}-\frac{\frac{1}{3}}{\frac{1}{6}}}
Convert 1 to fraction \frac{2}{2}.
\frac{\frac{\frac{2+1}{2}}{3}+\frac{1-\frac{1}{3}}{2}}{\frac{\frac{2\times 5+1}{5}}{\frac{5}{6}}-\frac{\frac{1}{3}}{\frac{1}{6}}}
Since \frac{2}{2} and \frac{1}{2} have the same denominator, add them by adding their numerators.
\frac{\frac{\frac{3}{2}}{3}+\frac{1-\frac{1}{3}}{2}}{\frac{\frac{2\times 5+1}{5}}{\frac{5}{6}}-\frac{\frac{1}{3}}{\frac{1}{6}}}
Add 2 and 1 to get 3.
\frac{\frac{3}{2\times 3}+\frac{1-\frac{1}{3}}{2}}{\frac{\frac{2\times 5+1}{5}}{\frac{5}{6}}-\frac{\frac{1}{3}}{\frac{1}{6}}}
Express \frac{\frac{3}{2}}{3} as a single fraction.
\frac{\frac{1}{2}+\frac{1-\frac{1}{3}}{2}}{\frac{\frac{2\times 5+1}{5}}{\frac{5}{6}}-\frac{\frac{1}{3}}{\frac{1}{6}}}
Cancel out 3 in both numerator and denominator.
\frac{\frac{1}{2}+\frac{\frac{3}{3}-\frac{1}{3}}{2}}{\frac{\frac{2\times 5+1}{5}}{\frac{5}{6}}-\frac{\frac{1}{3}}{\frac{1}{6}}}
Convert 1 to fraction \frac{3}{3}.
\frac{\frac{1}{2}+\frac{\frac{3-1}{3}}{2}}{\frac{\frac{2\times 5+1}{5}}{\frac{5}{6}}-\frac{\frac{1}{3}}{\frac{1}{6}}}
Since \frac{3}{3} and \frac{1}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{1}{2}+\frac{\frac{2}{3}}{2}}{\frac{\frac{2\times 5+1}{5}}{\frac{5}{6}}-\frac{\frac{1}{3}}{\frac{1}{6}}}
Subtract 1 from 3 to get 2.
\frac{\frac{1}{2}+\frac{2}{3\times 2}}{\frac{\frac{2\times 5+1}{5}}{\frac{5}{6}}-\frac{\frac{1}{3}}{\frac{1}{6}}}
Express \frac{\frac{2}{3}}{2} as a single fraction.
\frac{\frac{1}{2}+\frac{1}{3}}{\frac{\frac{2\times 5+1}{5}}{\frac{5}{6}}-\frac{\frac{1}{3}}{\frac{1}{6}}}
Cancel out 2 in both numerator and denominator.
\frac{\frac{3}{6}+\frac{2}{6}}{\frac{\frac{2\times 5+1}{5}}{\frac{5}{6}}-\frac{\frac{1}{3}}{\frac{1}{6}}}
Least common multiple of 2 and 3 is 6. Convert \frac{1}{2} and \frac{1}{3} to fractions with denominator 6.
\frac{\frac{3+2}{6}}{\frac{\frac{2\times 5+1}{5}}{\frac{5}{6}}-\frac{\frac{1}{3}}{\frac{1}{6}}}
Since \frac{3}{6} and \frac{2}{6} have the same denominator, add them by adding their numerators.
\frac{\frac{5}{6}}{\frac{\frac{2\times 5+1}{5}}{\frac{5}{6}}-\frac{\frac{1}{3}}{\frac{1}{6}}}
Add 3 and 2 to get 5.
\frac{\frac{5}{6}}{\frac{\left(2\times 5+1\right)\times 6}{5\times 5}-\frac{\frac{1}{3}}{\frac{1}{6}}}
Divide \frac{2\times 5+1}{5} by \frac{5}{6} by multiplying \frac{2\times 5+1}{5} by the reciprocal of \frac{5}{6}.
\frac{\frac{5}{6}}{\frac{\left(10+1\right)\times 6}{5\times 5}-\frac{\frac{1}{3}}{\frac{1}{6}}}
Multiply 2 and 5 to get 10.
\frac{\frac{5}{6}}{\frac{11\times 6}{5\times 5}-\frac{\frac{1}{3}}{\frac{1}{6}}}
Add 10 and 1 to get 11.
\frac{\frac{5}{6}}{\frac{66}{5\times 5}-\frac{\frac{1}{3}}{\frac{1}{6}}}
Multiply 11 and 6 to get 66.
\frac{\frac{5}{6}}{\frac{66}{25}-\frac{\frac{1}{3}}{\frac{1}{6}}}
Multiply 5 and 5 to get 25.
\frac{\frac{5}{6}}{\frac{66}{25}-\frac{1}{3}\times 6}
Divide \frac{1}{3} by \frac{1}{6} by multiplying \frac{1}{3} by the reciprocal of \frac{1}{6}.
\frac{\frac{5}{6}}{\frac{66}{25}-\frac{6}{3}}
Multiply \frac{1}{3} and 6 to get \frac{6}{3}.
\frac{\frac{5}{6}}{\frac{66}{25}-2}
Divide 6 by 3 to get 2.
\frac{\frac{5}{6}}{\frac{66}{25}-\frac{50}{25}}
Convert 2 to fraction \frac{50}{25}.
\frac{\frac{5}{6}}{\frac{66-50}{25}}
Since \frac{66}{25} and \frac{50}{25} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{5}{6}}{\frac{16}{25}}
Subtract 50 from 66 to get 16.
\frac{5}{6}\times \frac{25}{16}
Divide \frac{5}{6} by \frac{16}{25} by multiplying \frac{5}{6} by the reciprocal of \frac{16}{25}.
\frac{5\times 25}{6\times 16}
Multiply \frac{5}{6} times \frac{25}{16} by multiplying numerator times numerator and denominator times denominator.
\frac{125}{96}
Do the multiplications in the fraction \frac{5\times 25}{6\times 16}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}