Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Share

\frac{\frac{1+\frac{1}{2}}{3}+\frac{1-\frac{1}{3}}{2}}{\frac{1}{\frac{5}{6}}-\left(-\frac{\frac{1}{3}}{\frac{1}{8}}\right)}\times \frac{\frac{23^{1}}{2}}{\frac{47}{12}}
Divide 2^{1} by 2 to get 1.
\frac{\frac{\frac{2}{2}+\frac{1}{2}}{3}+\frac{1-\frac{1}{3}}{2}}{\frac{1}{\frac{5}{6}}-\left(-\frac{\frac{1}{3}}{\frac{1}{8}}\right)}\times \frac{\frac{23^{1}}{2}}{\frac{47}{12}}
Convert 1 to fraction \frac{2}{2}.
\frac{\frac{\frac{2+1}{2}}{3}+\frac{1-\frac{1}{3}}{2}}{\frac{1}{\frac{5}{6}}-\left(-\frac{\frac{1}{3}}{\frac{1}{8}}\right)}\times \frac{\frac{23^{1}}{2}}{\frac{47}{12}}
Since \frac{2}{2} and \frac{1}{2} have the same denominator, add them by adding their numerators.
\frac{\frac{\frac{3}{2}}{3}+\frac{1-\frac{1}{3}}{2}}{\frac{1}{\frac{5}{6}}-\left(-\frac{\frac{1}{3}}{\frac{1}{8}}\right)}\times \frac{\frac{23^{1}}{2}}{\frac{47}{12}}
Add 2 and 1 to get 3.
\frac{\frac{3}{2\times 3}+\frac{1-\frac{1}{3}}{2}}{\frac{1}{\frac{5}{6}}-\left(-\frac{\frac{1}{3}}{\frac{1}{8}}\right)}\times \frac{\frac{23^{1}}{2}}{\frac{47}{12}}
Express \frac{\frac{3}{2}}{3} as a single fraction.
\frac{\frac{1}{2}+\frac{1-\frac{1}{3}}{2}}{\frac{1}{\frac{5}{6}}-\left(-\frac{\frac{1}{3}}{\frac{1}{8}}\right)}\times \frac{\frac{23^{1}}{2}}{\frac{47}{12}}
Cancel out 3 in both numerator and denominator.
\frac{\frac{1}{2}+\frac{\frac{3}{3}-\frac{1}{3}}{2}}{\frac{1}{\frac{5}{6}}-\left(-\frac{\frac{1}{3}}{\frac{1}{8}}\right)}\times \frac{\frac{23^{1}}{2}}{\frac{47}{12}}
Convert 1 to fraction \frac{3}{3}.
\frac{\frac{1}{2}+\frac{\frac{3-1}{3}}{2}}{\frac{1}{\frac{5}{6}}-\left(-\frac{\frac{1}{3}}{\frac{1}{8}}\right)}\times \frac{\frac{23^{1}}{2}}{\frac{47}{12}}
Since \frac{3}{3} and \frac{1}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{1}{2}+\frac{\frac{2}{3}}{2}}{\frac{1}{\frac{5}{6}}-\left(-\frac{\frac{1}{3}}{\frac{1}{8}}\right)}\times \frac{\frac{23^{1}}{2}}{\frac{47}{12}}
Subtract 1 from 3 to get 2.
\frac{\frac{1}{2}+\frac{2}{3\times 2}}{\frac{1}{\frac{5}{6}}-\left(-\frac{\frac{1}{3}}{\frac{1}{8}}\right)}\times \frac{\frac{23^{1}}{2}}{\frac{47}{12}}
Express \frac{\frac{2}{3}}{2} as a single fraction.
\frac{\frac{1}{2}+\frac{1}{3}}{\frac{1}{\frac{5}{6}}-\left(-\frac{\frac{1}{3}}{\frac{1}{8}}\right)}\times \frac{\frac{23^{1}}{2}}{\frac{47}{12}}
Cancel out 2 in both numerator and denominator.
\frac{\frac{3}{6}+\frac{2}{6}}{\frac{1}{\frac{5}{6}}-\left(-\frac{\frac{1}{3}}{\frac{1}{8}}\right)}\times \frac{\frac{23^{1}}{2}}{\frac{47}{12}}
Least common multiple of 2 and 3 is 6. Convert \frac{1}{2} and \frac{1}{3} to fractions with denominator 6.
\frac{\frac{3+2}{6}}{\frac{1}{\frac{5}{6}}-\left(-\frac{\frac{1}{3}}{\frac{1}{8}}\right)}\times \frac{\frac{23^{1}}{2}}{\frac{47}{12}}
Since \frac{3}{6} and \frac{2}{6} have the same denominator, add them by adding their numerators.
\frac{\frac{5}{6}}{\frac{1}{\frac{5}{6}}-\left(-\frac{\frac{1}{3}}{\frac{1}{8}}\right)}\times \frac{\frac{23^{1}}{2}}{\frac{47}{12}}
Add 3 and 2 to get 5.
\frac{\frac{5}{6}}{1\times \frac{6}{5}-\left(-\frac{\frac{1}{3}}{\frac{1}{8}}\right)}\times \frac{\frac{23^{1}}{2}}{\frac{47}{12}}
Divide 1 by \frac{5}{6} by multiplying 1 by the reciprocal of \frac{5}{6}.
\frac{\frac{5}{6}}{\frac{6}{5}-\left(-\frac{\frac{1}{3}}{\frac{1}{8}}\right)}\times \frac{\frac{23^{1}}{2}}{\frac{47}{12}}
Multiply 1 and \frac{6}{5} to get \frac{6}{5}.
\frac{\frac{5}{6}}{\frac{6}{5}-\left(-\frac{1}{3}\times 8\right)}\times \frac{\frac{23^{1}}{2}}{\frac{47}{12}}
Divide \frac{1}{3} by \frac{1}{8} by multiplying \frac{1}{3} by the reciprocal of \frac{1}{8}.
\frac{\frac{5}{6}}{\frac{6}{5}-\left(-\frac{8}{3}\right)}\times \frac{\frac{23^{1}}{2}}{\frac{47}{12}}
Multiply \frac{1}{3} and 8 to get \frac{8}{3}.
\frac{\frac{5}{6}}{\frac{6}{5}+\frac{8}{3}}\times \frac{\frac{23^{1}}{2}}{\frac{47}{12}}
The opposite of -\frac{8}{3} is \frac{8}{3}.
\frac{\frac{5}{6}}{\frac{18}{15}+\frac{40}{15}}\times \frac{\frac{23^{1}}{2}}{\frac{47}{12}}
Least common multiple of 5 and 3 is 15. Convert \frac{6}{5} and \frac{8}{3} to fractions with denominator 15.
\frac{\frac{5}{6}}{\frac{18+40}{15}}\times \frac{\frac{23^{1}}{2}}{\frac{47}{12}}
Since \frac{18}{15} and \frac{40}{15} have the same denominator, add them by adding their numerators.
\frac{\frac{5}{6}}{\frac{58}{15}}\times \frac{\frac{23^{1}}{2}}{\frac{47}{12}}
Add 18 and 40 to get 58.
\frac{5}{6}\times \frac{15}{58}\times \frac{\frac{23^{1}}{2}}{\frac{47}{12}}
Divide \frac{5}{6} by \frac{58}{15} by multiplying \frac{5}{6} by the reciprocal of \frac{58}{15}.
\frac{5\times 15}{6\times 58}\times \frac{\frac{23^{1}}{2}}{\frac{47}{12}}
Multiply \frac{5}{6} times \frac{15}{58} by multiplying numerator times numerator and denominator times denominator.
\frac{75}{348}\times \frac{\frac{23^{1}}{2}}{\frac{47}{12}}
Do the multiplications in the fraction \frac{5\times 15}{6\times 58}.
\frac{25}{116}\times \frac{\frac{23^{1}}{2}}{\frac{47}{12}}
Reduce the fraction \frac{75}{348} to lowest terms by extracting and canceling out 3.
\frac{25}{116}\times \frac{23^{1}\times 12}{2\times 47}
Divide \frac{23^{1}}{2} by \frac{47}{12} by multiplying \frac{23^{1}}{2} by the reciprocal of \frac{47}{12}.
\frac{25}{116}\times \frac{6\times 23^{1}}{47}
Cancel out 2 in both numerator and denominator.
\frac{25}{116}\times \frac{6\times 23}{47}
Calculate 23 to the power of 1 and get 23.
\frac{25}{116}\times \frac{138}{47}
Multiply 6 and 23 to get 138.
\frac{25\times 138}{116\times 47}
Multiply \frac{25}{116} times \frac{138}{47} by multiplying numerator times numerator and denominator times denominator.
\frac{3450}{5452}
Do the multiplications in the fraction \frac{25\times 138}{116\times 47}.
\frac{1725}{2726}
Reduce the fraction \frac{3450}{5452} to lowest terms by extracting and canceling out 2.