Evaluate
-\frac{1725}{1034}\approx -1.66827853
Factor
-\frac{1725}{1034} = -1\frac{691}{1034} = -1.6682785299806577
Share
Copied to clipboard
\frac{\frac{1+\frac{1}{2}}{3}+\frac{1-\frac{1}{3}}{2}}{\frac{1}{\frac{5}{6}}-\frac{\frac{1}{3}}{\frac{1}{8}}}\times \frac{\frac{23^{1}}{2}}{\frac{47}{12}}
Divide 2^{1} by 2 to get 1.
\frac{\frac{\frac{2}{2}+\frac{1}{2}}{3}+\frac{1-\frac{1}{3}}{2}}{\frac{1}{\frac{5}{6}}-\frac{\frac{1}{3}}{\frac{1}{8}}}\times \frac{\frac{23^{1}}{2}}{\frac{47}{12}}
Convert 1 to fraction \frac{2}{2}.
\frac{\frac{\frac{2+1}{2}}{3}+\frac{1-\frac{1}{3}}{2}}{\frac{1}{\frac{5}{6}}-\frac{\frac{1}{3}}{\frac{1}{8}}}\times \frac{\frac{23^{1}}{2}}{\frac{47}{12}}
Since \frac{2}{2} and \frac{1}{2} have the same denominator, add them by adding their numerators.
\frac{\frac{\frac{3}{2}}{3}+\frac{1-\frac{1}{3}}{2}}{\frac{1}{\frac{5}{6}}-\frac{\frac{1}{3}}{\frac{1}{8}}}\times \frac{\frac{23^{1}}{2}}{\frac{47}{12}}
Add 2 and 1 to get 3.
\frac{\frac{3}{2\times 3}+\frac{1-\frac{1}{3}}{2}}{\frac{1}{\frac{5}{6}}-\frac{\frac{1}{3}}{\frac{1}{8}}}\times \frac{\frac{23^{1}}{2}}{\frac{47}{12}}
Express \frac{\frac{3}{2}}{3} as a single fraction.
\frac{\frac{1}{2}+\frac{1-\frac{1}{3}}{2}}{\frac{1}{\frac{5}{6}}-\frac{\frac{1}{3}}{\frac{1}{8}}}\times \frac{\frac{23^{1}}{2}}{\frac{47}{12}}
Cancel out 3 in both numerator and denominator.
\frac{\frac{1}{2}+\frac{\frac{3}{3}-\frac{1}{3}}{2}}{\frac{1}{\frac{5}{6}}-\frac{\frac{1}{3}}{\frac{1}{8}}}\times \frac{\frac{23^{1}}{2}}{\frac{47}{12}}
Convert 1 to fraction \frac{3}{3}.
\frac{\frac{1}{2}+\frac{\frac{3-1}{3}}{2}}{\frac{1}{\frac{5}{6}}-\frac{\frac{1}{3}}{\frac{1}{8}}}\times \frac{\frac{23^{1}}{2}}{\frac{47}{12}}
Since \frac{3}{3} and \frac{1}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{1}{2}+\frac{\frac{2}{3}}{2}}{\frac{1}{\frac{5}{6}}-\frac{\frac{1}{3}}{\frac{1}{8}}}\times \frac{\frac{23^{1}}{2}}{\frac{47}{12}}
Subtract 1 from 3 to get 2.
\frac{\frac{1}{2}+\frac{2}{3\times 2}}{\frac{1}{\frac{5}{6}}-\frac{\frac{1}{3}}{\frac{1}{8}}}\times \frac{\frac{23^{1}}{2}}{\frac{47}{12}}
Express \frac{\frac{2}{3}}{2} as a single fraction.
\frac{\frac{1}{2}+\frac{1}{3}}{\frac{1}{\frac{5}{6}}-\frac{\frac{1}{3}}{\frac{1}{8}}}\times \frac{\frac{23^{1}}{2}}{\frac{47}{12}}
Cancel out 2 in both numerator and denominator.
\frac{\frac{3}{6}+\frac{2}{6}}{\frac{1}{\frac{5}{6}}-\frac{\frac{1}{3}}{\frac{1}{8}}}\times \frac{\frac{23^{1}}{2}}{\frac{47}{12}}
Least common multiple of 2 and 3 is 6. Convert \frac{1}{2} and \frac{1}{3} to fractions with denominator 6.
\frac{\frac{3+2}{6}}{\frac{1}{\frac{5}{6}}-\frac{\frac{1}{3}}{\frac{1}{8}}}\times \frac{\frac{23^{1}}{2}}{\frac{47}{12}}
Since \frac{3}{6} and \frac{2}{6} have the same denominator, add them by adding their numerators.
\frac{\frac{5}{6}}{\frac{1}{\frac{5}{6}}-\frac{\frac{1}{3}}{\frac{1}{8}}}\times \frac{\frac{23^{1}}{2}}{\frac{47}{12}}
Add 3 and 2 to get 5.
\frac{\frac{5}{6}}{1\times \frac{6}{5}-\frac{\frac{1}{3}}{\frac{1}{8}}}\times \frac{\frac{23^{1}}{2}}{\frac{47}{12}}
Divide 1 by \frac{5}{6} by multiplying 1 by the reciprocal of \frac{5}{6}.
\frac{\frac{5}{6}}{\frac{6}{5}-\frac{\frac{1}{3}}{\frac{1}{8}}}\times \frac{\frac{23^{1}}{2}}{\frac{47}{12}}
Multiply 1 and \frac{6}{5} to get \frac{6}{5}.
\frac{\frac{5}{6}}{\frac{6}{5}-\frac{1}{3}\times 8}\times \frac{\frac{23^{1}}{2}}{\frac{47}{12}}
Divide \frac{1}{3} by \frac{1}{8} by multiplying \frac{1}{3} by the reciprocal of \frac{1}{8}.
\frac{\frac{5}{6}}{\frac{6}{5}-\frac{8}{3}}\times \frac{\frac{23^{1}}{2}}{\frac{47}{12}}
Multiply \frac{1}{3} and 8 to get \frac{8}{3}.
\frac{\frac{5}{6}}{\frac{18}{15}-\frac{40}{15}}\times \frac{\frac{23^{1}}{2}}{\frac{47}{12}}
Least common multiple of 5 and 3 is 15. Convert \frac{6}{5} and \frac{8}{3} to fractions with denominator 15.
\frac{\frac{5}{6}}{\frac{18-40}{15}}\times \frac{\frac{23^{1}}{2}}{\frac{47}{12}}
Since \frac{18}{15} and \frac{40}{15} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{5}{6}}{-\frac{22}{15}}\times \frac{\frac{23^{1}}{2}}{\frac{47}{12}}
Subtract 40 from 18 to get -22.
\frac{5}{6}\left(-\frac{15}{22}\right)\times \frac{\frac{23^{1}}{2}}{\frac{47}{12}}
Divide \frac{5}{6} by -\frac{22}{15} by multiplying \frac{5}{6} by the reciprocal of -\frac{22}{15}.
\frac{5\left(-15\right)}{6\times 22}\times \frac{\frac{23^{1}}{2}}{\frac{47}{12}}
Multiply \frac{5}{6} times -\frac{15}{22} by multiplying numerator times numerator and denominator times denominator.
\frac{-75}{132}\times \frac{\frac{23^{1}}{2}}{\frac{47}{12}}
Do the multiplications in the fraction \frac{5\left(-15\right)}{6\times 22}.
-\frac{25}{44}\times \frac{\frac{23^{1}}{2}}{\frac{47}{12}}
Reduce the fraction \frac{-75}{132} to lowest terms by extracting and canceling out 3.
-\frac{25}{44}\times \frac{23^{1}\times 12}{2\times 47}
Divide \frac{23^{1}}{2} by \frac{47}{12} by multiplying \frac{23^{1}}{2} by the reciprocal of \frac{47}{12}.
-\frac{25}{44}\times \frac{6\times 23^{1}}{47}
Cancel out 2 in both numerator and denominator.
-\frac{25}{44}\times \frac{6\times 23}{47}
Calculate 23 to the power of 1 and get 23.
-\frac{25}{44}\times \frac{138}{47}
Multiply 6 and 23 to get 138.
\frac{-25\times 138}{44\times 47}
Multiply -\frac{25}{44} times \frac{138}{47} by multiplying numerator times numerator and denominator times denominator.
\frac{-3450}{2068}
Do the multiplications in the fraction \frac{-25\times 138}{44\times 47}.
-\frac{1725}{1034}
Reduce the fraction \frac{-3450}{2068} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}