Evaluate
-\frac{217}{432}\approx -0.502314815
Factor
-\frac{217}{432} = -0.5023148148148148
Share
Copied to clipboard
\frac{-\frac{5}{3}+\frac{3}{8}}{3-\frac{2}{4+\frac{2}{3}}}
Fraction \frac{-5}{3} can be rewritten as -\frac{5}{3} by extracting the negative sign.
\frac{-\frac{40}{24}+\frac{9}{24}}{3-\frac{2}{4+\frac{2}{3}}}
Least common multiple of 3 and 8 is 24. Convert -\frac{5}{3} and \frac{3}{8} to fractions with denominator 24.
\frac{\frac{-40+9}{24}}{3-\frac{2}{4+\frac{2}{3}}}
Since -\frac{40}{24} and \frac{9}{24} have the same denominator, add them by adding their numerators.
\frac{-\frac{31}{24}}{3-\frac{2}{4+\frac{2}{3}}}
Add -40 and 9 to get -31.
\frac{-\frac{31}{24}}{3-\frac{2}{\frac{12}{3}+\frac{2}{3}}}
Convert 4 to fraction \frac{12}{3}.
\frac{-\frac{31}{24}}{3-\frac{2}{\frac{12+2}{3}}}
Since \frac{12}{3} and \frac{2}{3} have the same denominator, add them by adding their numerators.
\frac{-\frac{31}{24}}{3-\frac{2}{\frac{14}{3}}}
Add 12 and 2 to get 14.
\frac{-\frac{31}{24}}{3-2\times \frac{3}{14}}
Divide 2 by \frac{14}{3} by multiplying 2 by the reciprocal of \frac{14}{3}.
\frac{-\frac{31}{24}}{3-\frac{2\times 3}{14}}
Express 2\times \frac{3}{14} as a single fraction.
\frac{-\frac{31}{24}}{3-\frac{6}{14}}
Multiply 2 and 3 to get 6.
\frac{-\frac{31}{24}}{3-\frac{3}{7}}
Reduce the fraction \frac{6}{14} to lowest terms by extracting and canceling out 2.
\frac{-\frac{31}{24}}{\frac{21}{7}-\frac{3}{7}}
Convert 3 to fraction \frac{21}{7}.
\frac{-\frac{31}{24}}{\frac{21-3}{7}}
Since \frac{21}{7} and \frac{3}{7} have the same denominator, subtract them by subtracting their numerators.
\frac{-\frac{31}{24}}{\frac{18}{7}}
Subtract 3 from 21 to get 18.
-\frac{31}{24}\times \frac{7}{18}
Divide -\frac{31}{24} by \frac{18}{7} by multiplying -\frac{31}{24} by the reciprocal of \frac{18}{7}.
\frac{-31\times 7}{24\times 18}
Multiply -\frac{31}{24} times \frac{7}{18} by multiplying numerator times numerator and denominator times denominator.
\frac{-217}{432}
Do the multiplications in the fraction \frac{-31\times 7}{24\times 18}.
-\frac{217}{432}
Fraction \frac{-217}{432} can be rewritten as -\frac{217}{432} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}