Evaluate
\frac{1-3y}{y\left(y+1\right)}
Expand
\frac{1-3y}{y\left(y+1\right)}
Graph
Share
Copied to clipboard
\frac{\frac{-2y}{\left(y-1\right)\left(y+1\right)}-\frac{1}{y+1}}{\frac{y}{y-1}}
Factor y^{2}-1.
\frac{\frac{-2y}{\left(y-1\right)\left(y+1\right)}-\frac{y-1}{\left(y-1\right)\left(y+1\right)}}{\frac{y}{y-1}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(y-1\right)\left(y+1\right) and y+1 is \left(y-1\right)\left(y+1\right). Multiply \frac{1}{y+1} times \frac{y-1}{y-1}.
\frac{\frac{-2y-\left(y-1\right)}{\left(y-1\right)\left(y+1\right)}}{\frac{y}{y-1}}
Since \frac{-2y}{\left(y-1\right)\left(y+1\right)} and \frac{y-1}{\left(y-1\right)\left(y+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{-2y-y+1}{\left(y-1\right)\left(y+1\right)}}{\frac{y}{y-1}}
Do the multiplications in -2y-\left(y-1\right).
\frac{\frac{-3y+1}{\left(y-1\right)\left(y+1\right)}}{\frac{y}{y-1}}
Combine like terms in -2y-y+1.
\frac{\left(-3y+1\right)\left(y-1\right)}{\left(y-1\right)\left(y+1\right)y}
Divide \frac{-3y+1}{\left(y-1\right)\left(y+1\right)} by \frac{y}{y-1} by multiplying \frac{-3y+1}{\left(y-1\right)\left(y+1\right)} by the reciprocal of \frac{y}{y-1}.
\frac{-3y+1}{y\left(y+1\right)}
Cancel out y-1 in both numerator and denominator.
\frac{-3y+1}{y^{2}+y}
Use the distributive property to multiply y by y+1.
\frac{\frac{-2y}{\left(y-1\right)\left(y+1\right)}-\frac{1}{y+1}}{\frac{y}{y-1}}
Factor y^{2}-1.
\frac{\frac{-2y}{\left(y-1\right)\left(y+1\right)}-\frac{y-1}{\left(y-1\right)\left(y+1\right)}}{\frac{y}{y-1}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(y-1\right)\left(y+1\right) and y+1 is \left(y-1\right)\left(y+1\right). Multiply \frac{1}{y+1} times \frac{y-1}{y-1}.
\frac{\frac{-2y-\left(y-1\right)}{\left(y-1\right)\left(y+1\right)}}{\frac{y}{y-1}}
Since \frac{-2y}{\left(y-1\right)\left(y+1\right)} and \frac{y-1}{\left(y-1\right)\left(y+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{-2y-y+1}{\left(y-1\right)\left(y+1\right)}}{\frac{y}{y-1}}
Do the multiplications in -2y-\left(y-1\right).
\frac{\frac{-3y+1}{\left(y-1\right)\left(y+1\right)}}{\frac{y}{y-1}}
Combine like terms in -2y-y+1.
\frac{\left(-3y+1\right)\left(y-1\right)}{\left(y-1\right)\left(y+1\right)y}
Divide \frac{-3y+1}{\left(y-1\right)\left(y+1\right)} by \frac{y}{y-1} by multiplying \frac{-3y+1}{\left(y-1\right)\left(y+1\right)} by the reciprocal of \frac{y}{y-1}.
\frac{-3y+1}{y\left(y+1\right)}
Cancel out y-1 in both numerator and denominator.
\frac{-3y+1}{y^{2}+y}
Use the distributive property to multiply y by y+1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}