Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Share

\frac{\frac{\frac{-18}{21}+\frac{7}{21}}{\frac{18}{36}+\frac{8}{36}}}{\frac{\frac{1}{11}-1}{\frac{9}{12}+\frac{28}{12}}}
Divide 11 by 11 to get 1.
\frac{\left(\frac{-18}{21}+\frac{7}{21}\right)\left(\frac{9}{12}+\frac{28}{12}\right)}{\left(\frac{18}{36}+\frac{8}{36}\right)\left(\frac{1}{11}-1\right)}
Divide \frac{\frac{-18}{21}+\frac{7}{21}}{\frac{18}{36}+\frac{8}{36}} by \frac{\frac{1}{11}-1}{\frac{9}{12}+\frac{28}{12}} by multiplying \frac{\frac{-18}{21}+\frac{7}{21}}{\frac{18}{36}+\frac{8}{36}} by the reciprocal of \frac{\frac{1}{11}-1}{\frac{9}{12}+\frac{28}{12}}.
\frac{\left(-\frac{6}{7}+\frac{7}{21}\right)\left(\frac{9}{12}+\frac{28}{12}\right)}{\left(\frac{18}{36}+\frac{8}{36}\right)\left(\frac{1}{11}-1\right)}
Reduce the fraction \frac{-18}{21} to lowest terms by extracting and canceling out 3.
\frac{\left(-\frac{6}{7}+\frac{1}{3}\right)\left(\frac{9}{12}+\frac{28}{12}\right)}{\left(\frac{18}{36}+\frac{8}{36}\right)\left(\frac{1}{11}-1\right)}
Reduce the fraction \frac{7}{21} to lowest terms by extracting and canceling out 7.
\frac{\left(-\frac{18}{21}+\frac{7}{21}\right)\left(\frac{9}{12}+\frac{28}{12}\right)}{\left(\frac{18}{36}+\frac{8}{36}\right)\left(\frac{1}{11}-1\right)}
Least common multiple of 7 and 3 is 21. Convert -\frac{6}{7} and \frac{1}{3} to fractions with denominator 21.
\frac{\frac{-18+7}{21}\left(\frac{9}{12}+\frac{28}{12}\right)}{\left(\frac{18}{36}+\frac{8}{36}\right)\left(\frac{1}{11}-1\right)}
Since -\frac{18}{21} and \frac{7}{21} have the same denominator, add them by adding their numerators.
\frac{-\frac{11}{21}\left(\frac{9}{12}+\frac{28}{12}\right)}{\left(\frac{18}{36}+\frac{8}{36}\right)\left(\frac{1}{11}-1\right)}
Add -18 and 7 to get -11.
\frac{-\frac{11}{21}\times \frac{9+28}{12}}{\left(\frac{18}{36}+\frac{8}{36}\right)\left(\frac{1}{11}-1\right)}
Since \frac{9}{12} and \frac{28}{12} have the same denominator, add them by adding their numerators.
\frac{-\frac{11}{21}\times \frac{37}{12}}{\left(\frac{18}{36}+\frac{8}{36}\right)\left(\frac{1}{11}-1\right)}
Add 9 and 28 to get 37.
\frac{\frac{-11\times 37}{21\times 12}}{\left(\frac{18}{36}+\frac{8}{36}\right)\left(\frac{1}{11}-1\right)}
Multiply -\frac{11}{21} times \frac{37}{12} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{-407}{252}}{\left(\frac{18}{36}+\frac{8}{36}\right)\left(\frac{1}{11}-1\right)}
Do the multiplications in the fraction \frac{-11\times 37}{21\times 12}.
\frac{-\frac{407}{252}}{\left(\frac{18}{36}+\frac{8}{36}\right)\left(\frac{1}{11}-1\right)}
Fraction \frac{-407}{252} can be rewritten as -\frac{407}{252} by extracting the negative sign.
\frac{-\frac{407}{252}}{\left(\frac{1}{2}+\frac{8}{36}\right)\left(\frac{1}{11}-1\right)}
Reduce the fraction \frac{18}{36} to lowest terms by extracting and canceling out 18.
\frac{-\frac{407}{252}}{\left(\frac{1}{2}+\frac{2}{9}\right)\left(\frac{1}{11}-1\right)}
Reduce the fraction \frac{8}{36} to lowest terms by extracting and canceling out 4.
\frac{-\frac{407}{252}}{\left(\frac{9}{18}+\frac{4}{18}\right)\left(\frac{1}{11}-1\right)}
Least common multiple of 2 and 9 is 18. Convert \frac{1}{2} and \frac{2}{9} to fractions with denominator 18.
\frac{-\frac{407}{252}}{\frac{9+4}{18}\left(\frac{1}{11}-1\right)}
Since \frac{9}{18} and \frac{4}{18} have the same denominator, add them by adding their numerators.
\frac{-\frac{407}{252}}{\frac{13}{18}\left(\frac{1}{11}-1\right)}
Add 9 and 4 to get 13.
\frac{-\frac{407}{252}}{\frac{13}{18}\left(\frac{1}{11}-\frac{11}{11}\right)}
Convert 1 to fraction \frac{11}{11}.
\frac{-\frac{407}{252}}{\frac{13}{18}\times \frac{1-11}{11}}
Since \frac{1}{11} and \frac{11}{11} have the same denominator, subtract them by subtracting their numerators.
\frac{-\frac{407}{252}}{\frac{13}{18}\left(-\frac{10}{11}\right)}
Subtract 11 from 1 to get -10.
\frac{-\frac{407}{252}}{\frac{13\left(-10\right)}{18\times 11}}
Multiply \frac{13}{18} times -\frac{10}{11} by multiplying numerator times numerator and denominator times denominator.
\frac{-\frac{407}{252}}{\frac{-130}{198}}
Do the multiplications in the fraction \frac{13\left(-10\right)}{18\times 11}.
\frac{-\frac{407}{252}}{-\frac{65}{99}}
Reduce the fraction \frac{-130}{198} to lowest terms by extracting and canceling out 2.
-\frac{407}{252}\left(-\frac{99}{65}\right)
Divide -\frac{407}{252} by -\frac{65}{99} by multiplying -\frac{407}{252} by the reciprocal of -\frac{65}{99}.
\frac{-407\left(-99\right)}{252\times 65}
Multiply -\frac{407}{252} times -\frac{99}{65} by multiplying numerator times numerator and denominator times denominator.
\frac{40293}{16380}
Do the multiplications in the fraction \frac{-407\left(-99\right)}{252\times 65}.
\frac{4477}{1820}
Reduce the fraction \frac{40293}{16380} to lowest terms by extracting and canceling out 9.