Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{16^{2}+8}{2^{-2}}}{4\times \frac{\sqrt{3^{3}}+2}{3+22^{4}}}
Add 14 and 2 to get 16.
\frac{\frac{256+8}{2^{-2}}}{4\times \frac{\sqrt{3^{3}}+2}{3+22^{4}}}
Calculate 16 to the power of 2 and get 256.
\frac{\frac{264}{2^{-2}}}{4\times \frac{\sqrt{3^{3}}+2}{3+22^{4}}}
Add 256 and 8 to get 264.
\frac{\frac{264}{\frac{1}{4}}}{4\times \frac{\sqrt{3^{3}}+2}{3+22^{4}}}
Calculate 2 to the power of -2 and get \frac{1}{4}.
\frac{264\times 4}{4\times \frac{\sqrt{3^{3}}+2}{3+22^{4}}}
Divide 264 by \frac{1}{4} by multiplying 264 by the reciprocal of \frac{1}{4}.
\frac{1056}{4\times \frac{\sqrt{3^{3}}+2}{3+22^{4}}}
Multiply 264 and 4 to get 1056.
\frac{1056}{4\times \frac{\sqrt{27}+2}{3+22^{4}}}
Calculate 3 to the power of 3 and get 27.
\frac{1056}{4\times \frac{3\sqrt{3}+2}{3+22^{4}}}
Factor 27=3^{2}\times 3. Rewrite the square root of the product \sqrt{3^{2}\times 3} as the product of square roots \sqrt{3^{2}}\sqrt{3}. Take the square root of 3^{2}.
\frac{1056}{4\times \frac{3\sqrt{3}+2}{3+234256}}
Calculate 22 to the power of 4 and get 234256.
\frac{1056}{4\times \frac{3\sqrt{3}+2}{234259}}
Add 3 and 234256 to get 234259.
\frac{1056}{\frac{4\left(3\sqrt{3}+2\right)}{234259}}
Express 4\times \frac{3\sqrt{3}+2}{234259} as a single fraction.
\frac{1056\times 234259}{4\left(3\sqrt{3}+2\right)}
Divide 1056 by \frac{4\left(3\sqrt{3}+2\right)}{234259} by multiplying 1056 by the reciprocal of \frac{4\left(3\sqrt{3}+2\right)}{234259}.
\frac{264\times 234259}{3\sqrt{3}+2}
Cancel out 4 in both numerator and denominator.
\frac{264\times 234259\left(3\sqrt{3}-2\right)}{\left(3\sqrt{3}+2\right)\left(3\sqrt{3}-2\right)}
Rationalize the denominator of \frac{264\times 234259}{3\sqrt{3}+2} by multiplying numerator and denominator by 3\sqrt{3}-2.
\frac{264\times 234259\left(3\sqrt{3}-2\right)}{\left(3\sqrt{3}\right)^{2}-2^{2}}
Consider \left(3\sqrt{3}+2\right)\left(3\sqrt{3}-2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{61844376\left(3\sqrt{3}-2\right)}{\left(3\sqrt{3}\right)^{2}-2^{2}}
Multiply 264 and 234259 to get 61844376.
\frac{61844376\left(3\sqrt{3}-2\right)}{3^{2}\left(\sqrt{3}\right)^{2}-2^{2}}
Expand \left(3\sqrt{3}\right)^{2}.
\frac{61844376\left(3\sqrt{3}-2\right)}{9\left(\sqrt{3}\right)^{2}-2^{2}}
Calculate 3 to the power of 2 and get 9.
\frac{61844376\left(3\sqrt{3}-2\right)}{9\times 3-2^{2}}
The square of \sqrt{3} is 3.
\frac{61844376\left(3\sqrt{3}-2\right)}{27-2^{2}}
Multiply 9 and 3 to get 27.
\frac{61844376\left(3\sqrt{3}-2\right)}{27-4}
Calculate 2 to the power of 2 and get 4.
\frac{61844376\left(3\sqrt{3}-2\right)}{23}
Subtract 4 from 27 to get 23.
\frac{185533128\sqrt{3}-123688752}{23}
Use the distributive property to multiply 61844376 by 3\sqrt{3}-2.