Solve for C
C=-\frac{\sqrt{5}\left(1-2m\right)}{5D}
m\neq \frac{1}{2}\text{ and }D\neq 0
Solve for D
D=-\frac{\sqrt{5}\left(1-2m\right)}{5C}
m\neq \frac{1}{2}\text{ and }C\neq 0
Share
Copied to clipboard
\frac{\sqrt{5}}{2\left(m-\frac{1}{2}\right)}=\frac{1}{DC}
Express \frac{\frac{\sqrt{5}}{2}}{m-\frac{1}{2}} as a single fraction.
\frac{\sqrt{5}}{2m-1}=\frac{1}{DC}
Use the distributive property to multiply 2 by m-\frac{1}{2}.
\frac{1}{DC}=\frac{\sqrt{5}}{2m-1}
Swap sides so that all variable terms are on the left hand side.
2m-1=CD\sqrt{5}
Variable C cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by CD\left(2m-1\right), the least common multiple of DC,2m-1.
2m-1=\sqrt{5}CD
Reorder the terms.
\sqrt{5}CD=2m-1
Swap sides so that all variable terms are on the left hand side.
\sqrt{5}DC=2m-1
The equation is in standard form.
\frac{\sqrt{5}DC}{\sqrt{5}D}=\frac{2m-1}{\sqrt{5}D}
Divide both sides by \sqrt{5}D.
C=\frac{2m-1}{\sqrt{5}D}
Dividing by \sqrt{5}D undoes the multiplication by \sqrt{5}D.
C=\frac{\sqrt{5}\left(2m-1\right)}{5D}
Divide -1+2m by \sqrt{5}D.
C=\frac{\sqrt{5}\left(2m-1\right)}{5D}\text{, }C\neq 0
Variable C cannot be equal to 0.
\frac{\sqrt{5}}{2\left(m-\frac{1}{2}\right)}=\frac{1}{DC}
Express \frac{\frac{\sqrt{5}}{2}}{m-\frac{1}{2}} as a single fraction.
\frac{\sqrt{5}}{2m-1}=\frac{1}{DC}
Use the distributive property to multiply 2 by m-\frac{1}{2}.
\frac{1}{DC}=\frac{\sqrt{5}}{2m-1}
Swap sides so that all variable terms are on the left hand side.
2m-1=CD\sqrt{5}
Variable D cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by CD\left(2m-1\right), the least common multiple of DC,2m-1.
2m-1=\sqrt{5}CD
Reorder the terms.
\sqrt{5}CD=2m-1
Swap sides so that all variable terms are on the left hand side.
\frac{\sqrt{5}CD}{\sqrt{5}C}=\frac{2m-1}{\sqrt{5}C}
Divide both sides by \sqrt{5}C.
D=\frac{2m-1}{\sqrt{5}C}
Dividing by \sqrt{5}C undoes the multiplication by \sqrt{5}C.
D=\frac{\sqrt{5}\left(2m-1\right)}{5C}
Divide -1+2m by \sqrt{5}C.
D=\frac{\sqrt{5}\left(2m-1\right)}{5C}\text{, }D\neq 0
Variable D cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}