Evaluate
\frac{25\sqrt{2}\left(\sqrt{3}-1\right)}{2}\approx 12.940952255
Share
Copied to clipboard
\frac{\frac{50\sqrt{3}}{3}}{\frac{3+\sqrt{3}}{3}\sqrt{2}}
Express 50\times \frac{\sqrt{3}}{3} as a single fraction.
\frac{\frac{50\sqrt{3}}{3}}{\frac{\left(3+\sqrt{3}\right)\sqrt{2}}{3}}
Express \frac{3+\sqrt{3}}{3}\sqrt{2} as a single fraction.
\frac{50\sqrt{3}\times 3}{3\left(3+\sqrt{3}\right)\sqrt{2}}
Divide \frac{50\sqrt{3}}{3} by \frac{\left(3+\sqrt{3}\right)\sqrt{2}}{3} by multiplying \frac{50\sqrt{3}}{3} by the reciprocal of \frac{\left(3+\sqrt{3}\right)\sqrt{2}}{3}.
\frac{50\sqrt{3}}{\sqrt{2}\left(\sqrt{3}+3\right)}
Cancel out 3 in both numerator and denominator.
\frac{50\sqrt{3}\sqrt{2}}{\left(\sqrt{2}\right)^{2}\left(\sqrt{3}+3\right)}
Rationalize the denominator of \frac{50\sqrt{3}}{\sqrt{2}\left(\sqrt{3}+3\right)} by multiplying numerator and denominator by \sqrt{2}.
\frac{50\sqrt{3}\sqrt{2}}{2\left(\sqrt{3}+3\right)}
The square of \sqrt{2} is 2.
\frac{50\sqrt{6}}{2\left(\sqrt{3}+3\right)}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
\frac{25\sqrt{6}}{\sqrt{3}+3}
Cancel out 2 in both numerator and denominator.
\frac{25\sqrt{6}\left(\sqrt{3}-3\right)}{\left(\sqrt{3}+3\right)\left(\sqrt{3}-3\right)}
Rationalize the denominator of \frac{25\sqrt{6}}{\sqrt{3}+3} by multiplying numerator and denominator by \sqrt{3}-3.
\frac{25\sqrt{6}\left(\sqrt{3}-3\right)}{\left(\sqrt{3}\right)^{2}-3^{2}}
Consider \left(\sqrt{3}+3\right)\left(\sqrt{3}-3\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{25\sqrt{6}\left(\sqrt{3}-3\right)}{3-9}
Square \sqrt{3}. Square 3.
\frac{25\sqrt{6}\left(\sqrt{3}-3\right)}{-6}
Subtract 9 from 3 to get -6.
\frac{25\sqrt{6}\sqrt{3}-75\sqrt{6}}{-6}
Use the distributive property to multiply 25\sqrt{6} by \sqrt{3}-3.
\frac{25\sqrt{3}\sqrt{2}\sqrt{3}-75\sqrt{6}}{-6}
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
\frac{25\times 3\sqrt{2}-75\sqrt{6}}{-6}
Multiply \sqrt{3} and \sqrt{3} to get 3.
\frac{75\sqrt{2}-75\sqrt{6}}{-6}
Multiply 25 and 3 to get 75.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}