Evaluate
-4\sqrt{3}-7\approx -13.92820323
Factor
-\left(4\sqrt{3}+7\right)
Share
Copied to clipboard
\frac{\frac{\sqrt{3}}{2}+\frac{2}{2}}{\frac{\sqrt{3}}{2}-1}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{2}{2}.
\frac{\frac{\sqrt{3}+2}{2}}{\frac{\sqrt{3}}{2}-1}
Since \frac{\sqrt{3}}{2} and \frac{2}{2} have the same denominator, add them by adding their numerators.
\frac{\frac{\sqrt{3}+2}{2}}{\frac{\sqrt{3}}{2}-\frac{2}{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{2}{2}.
\frac{\frac{\sqrt{3}+2}{2}}{\frac{\sqrt{3}-2}{2}}
Since \frac{\sqrt{3}}{2} and \frac{2}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(\sqrt{3}+2\right)\times 2}{2\left(\sqrt{3}-2\right)}
Divide \frac{\sqrt{3}+2}{2} by \frac{\sqrt{3}-2}{2} by multiplying \frac{\sqrt{3}+2}{2} by the reciprocal of \frac{\sqrt{3}-2}{2}.
\frac{\sqrt{3}+2}{\sqrt{3}-2}
Cancel out 2 in both numerator and denominator.
\frac{\left(\sqrt{3}+2\right)\left(\sqrt{3}+2\right)}{\left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right)}
Rationalize the denominator of \frac{\sqrt{3}+2}{\sqrt{3}-2} by multiplying numerator and denominator by \sqrt{3}+2.
\frac{\left(\sqrt{3}+2\right)\left(\sqrt{3}+2\right)}{\left(\sqrt{3}\right)^{2}-2^{2}}
Consider \left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{3}+2\right)\left(\sqrt{3}+2\right)}{3-4}
Square \sqrt{3}. Square 2.
\frac{\left(\sqrt{3}+2\right)\left(\sqrt{3}+2\right)}{-1}
Subtract 4 from 3 to get -1.
\frac{\left(\sqrt{3}+2\right)^{2}}{-1}
Multiply \sqrt{3}+2 and \sqrt{3}+2 to get \left(\sqrt{3}+2\right)^{2}.
\frac{\left(\sqrt{3}\right)^{2}+4\sqrt{3}+4}{-1}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{3}+2\right)^{2}.
\frac{3+4\sqrt{3}+4}{-1}
The square of \sqrt{3} is 3.
\frac{7+4\sqrt{3}}{-1}
Add 3 and 4 to get 7.
-7-4\sqrt{3}
Anything divided by -1 gives its opposite. To find the opposite of 7+4\sqrt{3}, find the opposite of each term.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}