Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(\sqrt{3}+2\sqrt{3}-4\right)\times 2\sqrt{3}}{2\sqrt{3}\left(4+\sqrt{3}+2\sqrt{3}\right)}
Divide \frac{\sqrt{3}+2\sqrt{3}-4}{2\sqrt{3}} by \frac{4+\sqrt{3}+2\sqrt{3}}{2\sqrt{3}} by multiplying \frac{\sqrt{3}+2\sqrt{3}-4}{2\sqrt{3}} by the reciprocal of \frac{4+\sqrt{3}+2\sqrt{3}}{2\sqrt{3}}.
\frac{\sqrt{3}+2\sqrt{3}-4}{\sqrt{3}+2\sqrt{3}+4}
Cancel out 2\sqrt{3} in both numerator and denominator.
\frac{3\sqrt{3}-4}{\sqrt{3}+2\sqrt{3}+4}
Combine \sqrt{3} and 2\sqrt{3} to get 3\sqrt{3}.
\frac{3\sqrt{3}-4}{3\sqrt{3}+4}
Combine \sqrt{3} and 2\sqrt{3} to get 3\sqrt{3}.
\frac{\left(3\sqrt{3}-4\right)\left(3\sqrt{3}-4\right)}{\left(3\sqrt{3}+4\right)\left(3\sqrt{3}-4\right)}
Rationalize the denominator of \frac{3\sqrt{3}-4}{3\sqrt{3}+4} by multiplying numerator and denominator by 3\sqrt{3}-4.
\frac{\left(3\sqrt{3}-4\right)\left(3\sqrt{3}-4\right)}{\left(3\sqrt{3}\right)^{2}-4^{2}}
Consider \left(3\sqrt{3}+4\right)\left(3\sqrt{3}-4\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(3\sqrt{3}-4\right)^{2}}{\left(3\sqrt{3}\right)^{2}-4^{2}}
Multiply 3\sqrt{3}-4 and 3\sqrt{3}-4 to get \left(3\sqrt{3}-4\right)^{2}.
\frac{9\left(\sqrt{3}\right)^{2}-24\sqrt{3}+16}{\left(3\sqrt{3}\right)^{2}-4^{2}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3\sqrt{3}-4\right)^{2}.
\frac{9\times 3-24\sqrt{3}+16}{\left(3\sqrt{3}\right)^{2}-4^{2}}
The square of \sqrt{3} is 3.
\frac{27-24\sqrt{3}+16}{\left(3\sqrt{3}\right)^{2}-4^{2}}
Multiply 9 and 3 to get 27.
\frac{43-24\sqrt{3}}{\left(3\sqrt{3}\right)^{2}-4^{2}}
Add 27 and 16 to get 43.
\frac{43-24\sqrt{3}}{3^{2}\left(\sqrt{3}\right)^{2}-4^{2}}
Expand \left(3\sqrt{3}\right)^{2}.
\frac{43-24\sqrt{3}}{9\left(\sqrt{3}\right)^{2}-4^{2}}
Calculate 3 to the power of 2 and get 9.
\frac{43-24\sqrt{3}}{9\times 3-4^{2}}
The square of \sqrt{3} is 3.
\frac{43-24\sqrt{3}}{27-4^{2}}
Multiply 9 and 3 to get 27.
\frac{43-24\sqrt{3}}{27-16}
Calculate 4 to the power of 2 and get 16.
\frac{43-24\sqrt{3}}{11}
Subtract 16 from 27 to get 11.