Evaluate
\frac{3\sqrt{5}-\sqrt{15}}{16}\approx 0.177201287
Share
Copied to clipboard
\frac{\sqrt{15}\times \frac{\sqrt{2}}{2}}{\left(\sqrt{6}+\sqrt{2}\right)\times 4}
Express \frac{\frac{\sqrt{15}\times \frac{\sqrt{2}}{2}}{\sqrt{6}+\sqrt{2}}}{4} as a single fraction.
\frac{\frac{\sqrt{15}\sqrt{2}}{2}}{\left(\sqrt{6}+\sqrt{2}\right)\times 4}
Express \sqrt{15}\times \frac{\sqrt{2}}{2} as a single fraction.
\frac{\frac{\sqrt{30}}{2}}{\left(\sqrt{6}+\sqrt{2}\right)\times 4}
To multiply \sqrt{15} and \sqrt{2}, multiply the numbers under the square root.
\frac{\sqrt{30}}{2\left(\sqrt{6}+\sqrt{2}\right)\times 4}
Express \frac{\frac{\sqrt{30}}{2}}{\left(\sqrt{6}+\sqrt{2}\right)\times 4} as a single fraction.
\frac{\sqrt{30}}{8\left(\sqrt{6}+\sqrt{2}\right)}
Multiply 2 and 4 to get 8.
\frac{\sqrt{30}}{8\sqrt{6}+8\sqrt{2}}
Use the distributive property to multiply 8 by \sqrt{6}+\sqrt{2}.
\frac{\sqrt{30}\left(8\sqrt{6}-8\sqrt{2}\right)}{\left(8\sqrt{6}+8\sqrt{2}\right)\left(8\sqrt{6}-8\sqrt{2}\right)}
Rationalize the denominator of \frac{\sqrt{30}}{8\sqrt{6}+8\sqrt{2}} by multiplying numerator and denominator by 8\sqrt{6}-8\sqrt{2}.
\frac{\sqrt{30}\left(8\sqrt{6}-8\sqrt{2}\right)}{\left(8\sqrt{6}\right)^{2}-\left(8\sqrt{2}\right)^{2}}
Consider \left(8\sqrt{6}+8\sqrt{2}\right)\left(8\sqrt{6}-8\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{30}\left(8\sqrt{6}-8\sqrt{2}\right)}{8^{2}\left(\sqrt{6}\right)^{2}-\left(8\sqrt{2}\right)^{2}}
Expand \left(8\sqrt{6}\right)^{2}.
\frac{\sqrt{30}\left(8\sqrt{6}-8\sqrt{2}\right)}{64\left(\sqrt{6}\right)^{2}-\left(8\sqrt{2}\right)^{2}}
Calculate 8 to the power of 2 and get 64.
\frac{\sqrt{30}\left(8\sqrt{6}-8\sqrt{2}\right)}{64\times 6-\left(8\sqrt{2}\right)^{2}}
The square of \sqrt{6} is 6.
\frac{\sqrt{30}\left(8\sqrt{6}-8\sqrt{2}\right)}{384-\left(8\sqrt{2}\right)^{2}}
Multiply 64 and 6 to get 384.
\frac{\sqrt{30}\left(8\sqrt{6}-8\sqrt{2}\right)}{384-8^{2}\left(\sqrt{2}\right)^{2}}
Expand \left(8\sqrt{2}\right)^{2}.
\frac{\sqrt{30}\left(8\sqrt{6}-8\sqrt{2}\right)}{384-64\left(\sqrt{2}\right)^{2}}
Calculate 8 to the power of 2 and get 64.
\frac{\sqrt{30}\left(8\sqrt{6}-8\sqrt{2}\right)}{384-64\times 2}
The square of \sqrt{2} is 2.
\frac{\sqrt{30}\left(8\sqrt{6}-8\sqrt{2}\right)}{384-128}
Multiply 64 and 2 to get 128.
\frac{\sqrt{30}\left(8\sqrt{6}-8\sqrt{2}\right)}{256}
Subtract 128 from 384 to get 256.
\frac{8\sqrt{30}\sqrt{6}-8\sqrt{30}\sqrt{2}}{256}
Use the distributive property to multiply \sqrt{30} by 8\sqrt{6}-8\sqrt{2}.
\frac{8\sqrt{6}\sqrt{5}\sqrt{6}-8\sqrt{30}\sqrt{2}}{256}
Factor 30=6\times 5. Rewrite the square root of the product \sqrt{6\times 5} as the product of square roots \sqrt{6}\sqrt{5}.
\frac{8\times 6\sqrt{5}-8\sqrt{30}\sqrt{2}}{256}
Multiply \sqrt{6} and \sqrt{6} to get 6.
\frac{48\sqrt{5}-8\sqrt{30}\sqrt{2}}{256}
Multiply 8 and 6 to get 48.
\frac{48\sqrt{5}-8\sqrt{2}\sqrt{15}\sqrt{2}}{256}
Factor 30=2\times 15. Rewrite the square root of the product \sqrt{2\times 15} as the product of square roots \sqrt{2}\sqrt{15}.
\frac{48\sqrt{5}-8\times 2\sqrt{15}}{256}
Multiply \sqrt{2} and \sqrt{2} to get 2.
\frac{48\sqrt{5}-16\sqrt{15}}{256}
Multiply -8 and 2 to get -16.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}