Solve for δ
\left\{\begin{matrix}\delta =0\text{, }&\nexists n_{2}\in \mathrm{Z}\text{ : }A=\pi n_{2}\text{ and }\nexists n_{1}\in \mathrm{Z}\text{ : }A=2\pi n_{1}+\frac{\pi }{2}\\\delta \geq -\frac{1}{11}\text{, }&\exists n_{3}\in \mathrm{Z}\text{ : }A=2\pi n_{3}+\frac{3\pi }{2}\end{matrix}\right.
Solve for A
\left\{\begin{matrix}A=2\pi n_{2}+\frac{3\pi }{2}\text{, }n_{2}\in \mathrm{Z}\text{, }&\delta \geq -\frac{1}{11}\\A\notin 2\pi n_{1}+\frac{\pi }{2},\pi n_{1}\text{, }\forall n_{1}\in \mathrm{Z}\text{, }&\delta =0\end{matrix}\right.
Share
Copied to clipboard
\csc(A)+\cot(A)\sqrt{1+11\delta }=\frac{\cos(A)-\sin(A)+1}{\cos(A)+\sin(A)-1}
Swap sides so that all variable terms are on the left hand side.
\cot(A)\sqrt{1+11\delta }=\frac{\cos(A)-\sin(A)+1}{\cos(A)+\sin(A)-1}-\csc(A)
Subtract \csc(A) from both sides.
\frac{\cot(A)\sqrt{11\delta +1}}{\cot(A)}=\frac{\cot(A)}{\cot(A)}
Divide both sides by \cot(A).
\sqrt{11\delta +1}=\frac{\cot(A)}{\cot(A)}
Dividing by \cot(A) undoes the multiplication by \cot(A).
\sqrt{11\delta +1}=1
Divide \cot(A) by \cot(A).
11\delta +1=1
Square both sides of the equation.
11\delta +1-1=1-1
Subtract 1 from both sides of the equation.
11\delta =1-1
Subtracting 1 from itself leaves 0.
11\delta =0
Subtract 1 from 1.
\frac{11\delta }{11}=\frac{0}{11}
Divide both sides by 11.
\delta =\frac{0}{11}
Dividing by 11 undoes the multiplication by 11.
\delta =0
Divide 0 by 11.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}