Skip to main content
Evaluate
Tick mark Image

Share

\frac{\frac{1}{2}}{1+\sin(60)}+\frac{1}{\tan(30)}
Get the value of \cos(60) from trigonometric values table.
\frac{\frac{1}{2}}{1+\frac{\sqrt{3}}{2}}+\frac{1}{\tan(30)}
Get the value of \sin(60) from trigonometric values table.
\frac{\frac{1}{2}}{\frac{2}{2}+\frac{\sqrt{3}}{2}}+\frac{1}{\tan(30)}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{2}{2}.
\frac{\frac{1}{2}}{\frac{2+\sqrt{3}}{2}}+\frac{1}{\tan(30)}
Since \frac{2}{2} and \frac{\sqrt{3}}{2} have the same denominator, add them by adding their numerators.
\frac{2}{2\left(2+\sqrt{3}\right)}+\frac{1}{\tan(30)}
Divide \frac{1}{2} by \frac{2+\sqrt{3}}{2} by multiplying \frac{1}{2} by the reciprocal of \frac{2+\sqrt{3}}{2}.
\frac{2}{2\left(2+\sqrt{3}\right)}+\frac{1}{\frac{\sqrt{3}}{3}}
Get the value of \tan(30) from trigonometric values table.
\frac{2}{2\left(2+\sqrt{3}\right)}+\frac{3}{\sqrt{3}}
Divide 1 by \frac{\sqrt{3}}{3} by multiplying 1 by the reciprocal of \frac{\sqrt{3}}{3}.
\frac{2}{2\left(2+\sqrt{3}\right)}+\frac{3\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{3}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{2}{2\left(2+\sqrt{3}\right)}+\frac{3\sqrt{3}}{3}
The square of \sqrt{3} is 3.
\frac{2}{2\left(2+\sqrt{3}\right)}+\sqrt{3}
Cancel out 3 and 3.
\frac{2}{2\left(2+\sqrt{3}\right)}+\frac{\sqrt{3}\times 2\left(2+\sqrt{3}\right)}{2\left(2+\sqrt{3}\right)}
To add or subtract expressions, expand them to make their denominators the same. Multiply \sqrt{3} times \frac{2\left(2+\sqrt{3}\right)}{2\left(2+\sqrt{3}\right)}.
\frac{2+\sqrt{3}\times 2\left(2+\sqrt{3}\right)}{2\left(2+\sqrt{3}\right)}
Since \frac{2}{2\left(2+\sqrt{3}\right)} and \frac{\sqrt{3}\times 2\left(2+\sqrt{3}\right)}{2\left(2+\sqrt{3}\right)} have the same denominator, add them by adding their numerators.
\frac{2+4\sqrt{3}+6}{2\left(2+\sqrt{3}\right)}
Do the multiplications in 2+\sqrt{3}\times 2\left(2+\sqrt{3}\right).
\frac{8+4\sqrt{3}}{2\left(2+\sqrt{3}\right)}
Do the calculations in 2+4\sqrt{3}+6.
\frac{8+4\sqrt{3}}{2\sqrt{3}+4}
Expand 2\left(2+\sqrt{3}\right).
\frac{\left(8+4\sqrt{3}\right)\left(2\sqrt{3}-4\right)}{\left(2\sqrt{3}+4\right)\left(2\sqrt{3}-4\right)}
Rationalize the denominator of \frac{8+4\sqrt{3}}{2\sqrt{3}+4} by multiplying numerator and denominator by 2\sqrt{3}-4.
\frac{\left(8+4\sqrt{3}\right)\left(2\sqrt{3}-4\right)}{\left(2\sqrt{3}\right)^{2}-4^{2}}
Consider \left(2\sqrt{3}+4\right)\left(2\sqrt{3}-4\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(8+4\sqrt{3}\right)\left(2\sqrt{3}-4\right)}{2^{2}\left(\sqrt{3}\right)^{2}-4^{2}}
Expand \left(2\sqrt{3}\right)^{2}.
\frac{\left(8+4\sqrt{3}\right)\left(2\sqrt{3}-4\right)}{4\left(\sqrt{3}\right)^{2}-4^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{\left(8+4\sqrt{3}\right)\left(2\sqrt{3}-4\right)}{4\times 3-4^{2}}
The square of \sqrt{3} is 3.
\frac{\left(8+4\sqrt{3}\right)\left(2\sqrt{3}-4\right)}{12-4^{2}}
Multiply 4 and 3 to get 12.
\frac{\left(8+4\sqrt{3}\right)\left(2\sqrt{3}-4\right)}{12-16}
Calculate 4 to the power of 2 and get 16.
\frac{\left(8+4\sqrt{3}\right)\left(2\sqrt{3}-4\right)}{-4}
Subtract 16 from 12 to get -4.
\frac{-32+8\left(\sqrt{3}\right)^{2}}{-4}
Use the distributive property to multiply 8+4\sqrt{3} by 2\sqrt{3}-4 and combine like terms.
\frac{-32+8\times 3}{-4}
The square of \sqrt{3} is 3.
\frac{-32+24}{-4}
Multiply 8 and 3 to get 24.
\frac{-8}{-4}
Add -32 and 24 to get -8.
2
Divide -8 by -4 to get 2.