Verify
false
Share
Copied to clipboard
\frac{0.9945218953682733}{0.2125565616700221} = \frac{4.809734344744132}{-6.313751514675037}
Evaluate trigonometric functions in the problem
\frac{9945218953682733}{2125565616700221}=\frac{4.809734344744132}{-6.313751514675037}
Expand \frac{0.9945218953682733}{0.2125565616700221} by multiplying both numerator and the denominator by 10000000000000000.
\frac{3315072984560911}{708521872233407}=\frac{4.809734344744132}{-6.313751514675037}
Reduce the fraction \frac{9945218953682733}{2125565616700221} to lowest terms by extracting and canceling out 3.
\frac{3315072984560911}{708521872233407}=\frac{4809734344744132}{-6313751514675037}
Expand \frac{4.809734344744132}{-6.313751514675037} by multiplying both numerator and the denominator by 1000000000000000.
\frac{3315072984560911}{708521872233407}=-\frac{4809734344744132}{6313751514675037}
Fraction \frac{4809734344744132}{-6313751514675037} can be rewritten as -\frac{4809734344744132}{6313751514675037} by extracting the negative sign.
\frac{20930547077529747373748297678707}{4473431043994066486695020361059}=-\frac{3407801982883431429858797617724}{4473431043994066486695020361059}
Least common multiple of 708521872233407 and 6313751514675037 is 4473431043994066486695020361059. Convert \frac{3315072984560911}{708521872233407} and -\frac{4809734344744132}{6313751514675037} to fractions with denominator 4473431043994066486695020361059.
\text{false}
Compare \frac{20930547077529747373748297678707}{4473431043994066486695020361059} and -\frac{3407801982883431429858797617724}{4473431043994066486695020361059}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}