Solve for y
y=-\frac{\cos(x)}{1-x}
\nexists n_{1}\in \mathrm{Z}\text{ : }x=\pi n_{1}+\frac{\pi }{2}\text{ and }x\neq 1
Share
Copied to clipboard
\cos(x)+y=xy
Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by y.
\cos(x)+y-xy=0
Subtract xy from both sides.
y-xy=-\cos(x)
Subtract \cos(x) from both sides. Anything subtracted from zero gives its negation.
\left(1-x\right)y=-\cos(x)
Combine all terms containing y.
\frac{\left(1-x\right)y}{1-x}=-\frac{\cos(x)}{1-x}
Divide both sides by 1-x.
y=-\frac{\cos(x)}{1-x}
Dividing by 1-x undoes the multiplication by 1-x.
y=-\frac{\cos(x)}{1-x}\text{, }y\neq 0
Variable y cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}