Solve for x
x=-\frac{\alpha }{y}+90
y\neq 0
Solve for y
\left\{\begin{matrix}y=-\frac{\alpha }{x-90}\text{, }&\alpha \neq 0\text{ and }x\neq 90\\y\neq 0\text{, }&x=90\text{ and }\alpha =0\end{matrix}\right.
Graph
Share
Copied to clipboard
\alpha =y\times 90-xy
Multiply both sides of the equation by y.
y\times 90-xy=\alpha
Swap sides so that all variable terms are on the left hand side.
-xy=\alpha -y\times 90
Subtract y\times 90 from both sides.
-xy=\alpha -90y
Multiply -1 and 90 to get -90.
\left(-y\right)x=\alpha -90y
The equation is in standard form.
\frac{\left(-y\right)x}{-y}=\frac{\alpha -90y}{-y}
Divide both sides by -y.
x=\frac{\alpha -90y}{-y}
Dividing by -y undoes the multiplication by -y.
x=-\frac{\alpha }{y}+90
Divide -90y+\alpha by -y.
\alpha =y\times 90-xy
Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by y.
y\times 90-xy=\alpha
Swap sides so that all variable terms are on the left hand side.
\left(90-x\right)y=\alpha
Combine all terms containing y.
\frac{\left(90-x\right)y}{90-x}=\frac{\alpha }{90-x}
Divide both sides by 90-x.
y=\frac{\alpha }{90-x}
Dividing by 90-x undoes the multiplication by 90-x.
y=\frac{\alpha }{90-x}\text{, }y\neq 0
Variable y cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}