Solve for B
\left\{\begin{matrix}B=-\frac{Y\left(X-90\right)}{\alpha }\text{, }&X\neq 90\text{ and }Y\neq 0\text{ and }\alpha \neq 0\\B\neq 0\text{, }&\alpha =0\text{ and }X=90\text{ and }Y\neq 0\end{matrix}\right.
Solve for X
X=-\frac{B\alpha }{Y}+90
Y\neq 0\text{ and }B\neq 0
Quiz
Linear Equation
5 problems similar to:
\frac { \alpha } { Y } = \frac { 90 ^ { \circ } - X } { B }
Share
Copied to clipboard
B\alpha =Y\left(90-X\right)
Variable B cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by BY, the least common multiple of Y,B.
B\alpha =90Y-YX
Use the distributive property to multiply Y by 90-X.
\alpha B=90Y-XY
The equation is in standard form.
\frac{\alpha B}{\alpha }=\frac{Y\left(90-X\right)}{\alpha }
Divide both sides by \alpha .
B=\frac{Y\left(90-X\right)}{\alpha }
Dividing by \alpha undoes the multiplication by \alpha .
B=\frac{Y\left(90-X\right)}{\alpha }\text{, }B\neq 0
Variable B cannot be equal to 0.
B\alpha =Y\left(90-X\right)
Multiply both sides of the equation by BY, the least common multiple of Y,B.
B\alpha =90Y-YX
Use the distributive property to multiply Y by 90-X.
90Y-YX=B\alpha
Swap sides so that all variable terms are on the left hand side.
-YX=B\alpha -90Y
Subtract 90Y from both sides.
\left(-Y\right)X=B\alpha -90Y
The equation is in standard form.
\frac{\left(-Y\right)X}{-Y}=\frac{B\alpha -90Y}{-Y}
Divide both sides by -Y.
X=\frac{B\alpha -90Y}{-Y}
Dividing by -Y undoes the multiplication by -Y.
X=-\frac{B\alpha }{Y}+90
Divide B\alpha -90Y by -Y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}