Solve for H
\left\{\begin{matrix}H=\frac{KMt}{S}\text{, }&M\neq 0\text{ and }t\neq 0\text{ and }K\neq 0\text{ and }S\neq 0\text{ and }\Delta \neq 0\\H\neq 0\text{, }&\left(M=0\text{ or }K=0\right)\text{ and }S=0\text{ and }t\neq 0\text{ and }\Delta \neq 0\end{matrix}\right.
Solve for K
\left\{\begin{matrix}K=\frac{HS}{Mt}\text{, }&M\neq 0\text{ and }t\neq 0\text{ and }\Delta \neq 0\text{ and }H\neq 0\\K\in \mathrm{R}\text{, }&S=0\text{ and }M=0\text{ and }t\neq 0\text{ and }\Delta \neq 0\text{ and }H\neq 0\end{matrix}\right.
Share
Copied to clipboard
H\Delta S=t\Delta \times 1KM
Variable H cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by Ht\Delta , the least common multiple of \Delta t,1H.
HS\Delta =KMt\Delta
Reorder the terms.
S\Delta H=KMt\Delta
The equation is in standard form.
\frac{S\Delta H}{S\Delta }=\frac{KMt\Delta }{S\Delta }
Divide both sides by S\Delta .
H=\frac{KMt\Delta }{S\Delta }
Dividing by S\Delta undoes the multiplication by S\Delta .
H=\frac{KMt}{S}
Divide KMt\Delta by S\Delta .
H=\frac{KMt}{S}\text{, }H\neq 0
Variable H cannot be equal to 0.
H\Delta S=t\Delta \times 1KM
Multiply both sides of the equation by Ht\Delta , the least common multiple of \Delta t,1H.
t\Delta \times 1KM=H\Delta S
Swap sides so that all variable terms are on the left hand side.
KMt\Delta =HS\Delta
Reorder the terms.
Mt\Delta K=HS\Delta
The equation is in standard form.
\frac{Mt\Delta K}{Mt\Delta }=\frac{HS\Delta }{Mt\Delta }
Divide both sides by Mt\Delta .
K=\frac{HS\Delta }{Mt\Delta }
Dividing by Mt\Delta undoes the multiplication by Mt\Delta .
K=\frac{HS}{Mt}
Divide HS\Delta by Mt\Delta .
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}