Solve for L
\left\{\begin{matrix}L=L_{0}Ta\text{, }&L_{0}\neq 0\\L\in \mathrm{R}\text{, }&\Delta =0\text{ and }L_{0}\neq 0\end{matrix}\right.
Solve for L_0
\left\{\begin{matrix}L_{0}=\frac{L}{Ta}\text{, }&L\neq 0\text{ and }T\neq 0\text{ and }a\neq 0\\L_{0}\neq 0\text{, }&\left(a=0\text{ and }L=0\right)\text{ or }\left(T=0\text{ and }L=0\right)\text{ or }\Delta =0\end{matrix}\right.
Share
Copied to clipboard
\Delta L=a\Delta TL_{0}
Multiply both sides of the equation by L_{0}.
\Delta L=L_{0}Ta\Delta
The equation is in standard form.
\frac{\Delta L}{\Delta }=\frac{L_{0}Ta\Delta }{\Delta }
Divide both sides by \Delta .
L=\frac{L_{0}Ta\Delta }{\Delta }
Dividing by \Delta undoes the multiplication by \Delta .
L=L_{0}Ta
Divide a\Delta TL_{0} by \Delta .
\Delta L=a\Delta TL_{0}
Variable L_{0} cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by L_{0}.
a\Delta TL_{0}=\Delta L
Swap sides so that all variable terms are on the left hand side.
Ta\Delta L_{0}=L\Delta
The equation is in standard form.
\frac{Ta\Delta L_{0}}{Ta\Delta }=\frac{L\Delta }{Ta\Delta }
Divide both sides by a\Delta T.
L_{0}=\frac{L\Delta }{Ta\Delta }
Dividing by a\Delta T undoes the multiplication by a\Delta T.
L_{0}=\frac{L}{Ta}
Divide \Delta L by a\Delta T.
L_{0}=\frac{L}{Ta}\text{, }L_{0}\neq 0
Variable L_{0} cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}