Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(\left(\frac{8}{27}+\left(\frac{1}{2}\right)^{2}\times \frac{2}{3}+\frac{32}{135}\right)\times \frac{25}{3}-4\right)\times \frac{77}{3}}{\left(\left(\frac{2}{3}\right)^{2}+2\times \frac{2}{3}\times \frac{1}{4}+\left(\frac{1}{4}\right)^{2}\right)\times 3}-13
Calculate \frac{2}{3} to the power of 3 and get \frac{8}{27}.
\frac{\left(\left(\frac{8}{27}+\frac{1}{4}\times \frac{2}{3}+\frac{32}{135}\right)\times \frac{25}{3}-4\right)\times \frac{77}{3}}{\left(\left(\frac{2}{3}\right)^{2}+2\times \frac{2}{3}\times \frac{1}{4}+\left(\frac{1}{4}\right)^{2}\right)\times 3}-13
Calculate \frac{1}{2} to the power of 2 and get \frac{1}{4}.
\frac{\left(\left(\frac{8}{27}+\frac{1\times 2}{4\times 3}+\frac{32}{135}\right)\times \frac{25}{3}-4\right)\times \frac{77}{3}}{\left(\left(\frac{2}{3}\right)^{2}+2\times \frac{2}{3}\times \frac{1}{4}+\left(\frac{1}{4}\right)^{2}\right)\times 3}-13
Multiply \frac{1}{4} times \frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(\left(\frac{8}{27}+\frac{2}{12}+\frac{32}{135}\right)\times \frac{25}{3}-4\right)\times \frac{77}{3}}{\left(\left(\frac{2}{3}\right)^{2}+2\times \frac{2}{3}\times \frac{1}{4}+\left(\frac{1}{4}\right)^{2}\right)\times 3}-13
Do the multiplications in the fraction \frac{1\times 2}{4\times 3}.
\frac{\left(\left(\frac{8}{27}+\frac{1}{6}+\frac{32}{135}\right)\times \frac{25}{3}-4\right)\times \frac{77}{3}}{\left(\left(\frac{2}{3}\right)^{2}+2\times \frac{2}{3}\times \frac{1}{4}+\left(\frac{1}{4}\right)^{2}\right)\times 3}-13
Reduce the fraction \frac{2}{12} to lowest terms by extracting and canceling out 2.
\frac{\left(\left(\frac{16}{54}+\frac{9}{54}+\frac{32}{135}\right)\times \frac{25}{3}-4\right)\times \frac{77}{3}}{\left(\left(\frac{2}{3}\right)^{2}+2\times \frac{2}{3}\times \frac{1}{4}+\left(\frac{1}{4}\right)^{2}\right)\times 3}-13
Least common multiple of 27 and 6 is 54. Convert \frac{8}{27} and \frac{1}{6} to fractions with denominator 54.
\frac{\left(\left(\frac{16+9}{54}+\frac{32}{135}\right)\times \frac{25}{3}-4\right)\times \frac{77}{3}}{\left(\left(\frac{2}{3}\right)^{2}+2\times \frac{2}{3}\times \frac{1}{4}+\left(\frac{1}{4}\right)^{2}\right)\times 3}-13
Since \frac{16}{54} and \frac{9}{54} have the same denominator, add them by adding their numerators.
\frac{\left(\left(\frac{25}{54}+\frac{32}{135}\right)\times \frac{25}{3}-4\right)\times \frac{77}{3}}{\left(\left(\frac{2}{3}\right)^{2}+2\times \frac{2}{3}\times \frac{1}{4}+\left(\frac{1}{4}\right)^{2}\right)\times 3}-13
Add 16 and 9 to get 25.
\frac{\left(\left(\frac{125}{270}+\frac{64}{270}\right)\times \frac{25}{3}-4\right)\times \frac{77}{3}}{\left(\left(\frac{2}{3}\right)^{2}+2\times \frac{2}{3}\times \frac{1}{4}+\left(\frac{1}{4}\right)^{2}\right)\times 3}-13
Least common multiple of 54 and 135 is 270. Convert \frac{25}{54} and \frac{32}{135} to fractions with denominator 270.
\frac{\left(\frac{125+64}{270}\times \frac{25}{3}-4\right)\times \frac{77}{3}}{\left(\left(\frac{2}{3}\right)^{2}+2\times \frac{2}{3}\times \frac{1}{4}+\left(\frac{1}{4}\right)^{2}\right)\times 3}-13
Since \frac{125}{270} and \frac{64}{270} have the same denominator, add them by adding their numerators.
\frac{\left(\frac{189}{270}\times \frac{25}{3}-4\right)\times \frac{77}{3}}{\left(\left(\frac{2}{3}\right)^{2}+2\times \frac{2}{3}\times \frac{1}{4}+\left(\frac{1}{4}\right)^{2}\right)\times 3}-13
Add 125 and 64 to get 189.
\frac{\left(\frac{7}{10}\times \frac{25}{3}-4\right)\times \frac{77}{3}}{\left(\left(\frac{2}{3}\right)^{2}+2\times \frac{2}{3}\times \frac{1}{4}+\left(\frac{1}{4}\right)^{2}\right)\times 3}-13
Reduce the fraction \frac{189}{270} to lowest terms by extracting and canceling out 27.
\frac{\left(\frac{7\times 25}{10\times 3}-4\right)\times \frac{77}{3}}{\left(\left(\frac{2}{3}\right)^{2}+2\times \frac{2}{3}\times \frac{1}{4}+\left(\frac{1}{4}\right)^{2}\right)\times 3}-13
Multiply \frac{7}{10} times \frac{25}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(\frac{175}{30}-4\right)\times \frac{77}{3}}{\left(\left(\frac{2}{3}\right)^{2}+2\times \frac{2}{3}\times \frac{1}{4}+\left(\frac{1}{4}\right)^{2}\right)\times 3}-13
Do the multiplications in the fraction \frac{7\times 25}{10\times 3}.
\frac{\left(\frac{35}{6}-4\right)\times \frac{77}{3}}{\left(\left(\frac{2}{3}\right)^{2}+2\times \frac{2}{3}\times \frac{1}{4}+\left(\frac{1}{4}\right)^{2}\right)\times 3}-13
Reduce the fraction \frac{175}{30} to lowest terms by extracting and canceling out 5.
\frac{\left(\frac{35}{6}-\frac{24}{6}\right)\times \frac{77}{3}}{\left(\left(\frac{2}{3}\right)^{2}+2\times \frac{2}{3}\times \frac{1}{4}+\left(\frac{1}{4}\right)^{2}\right)\times 3}-13
Convert 4 to fraction \frac{24}{6}.
\frac{\frac{35-24}{6}\times \frac{77}{3}}{\left(\left(\frac{2}{3}\right)^{2}+2\times \frac{2}{3}\times \frac{1}{4}+\left(\frac{1}{4}\right)^{2}\right)\times 3}-13
Since \frac{35}{6} and \frac{24}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{11}{6}\times \frac{77}{3}}{\left(\left(\frac{2}{3}\right)^{2}+2\times \frac{2}{3}\times \frac{1}{4}+\left(\frac{1}{4}\right)^{2}\right)\times 3}-13
Subtract 24 from 35 to get 11.
\frac{\frac{11\times 77}{6\times 3}}{\left(\left(\frac{2}{3}\right)^{2}+2\times \frac{2}{3}\times \frac{1}{4}+\left(\frac{1}{4}\right)^{2}\right)\times 3}-13
Multiply \frac{11}{6} times \frac{77}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{847}{18}}{\left(\left(\frac{2}{3}\right)^{2}+2\times \frac{2}{3}\times \frac{1}{4}+\left(\frac{1}{4}\right)^{2}\right)\times 3}-13
Do the multiplications in the fraction \frac{11\times 77}{6\times 3}.
\frac{\frac{847}{18}}{\left(\frac{4}{9}+2\times \frac{2}{3}\times \frac{1}{4}+\left(\frac{1}{4}\right)^{2}\right)\times 3}-13
Calculate \frac{2}{3} to the power of 2 and get \frac{4}{9}.
\frac{\frac{847}{18}}{\left(\frac{4}{9}+\frac{2\times 2}{3}\times \frac{1}{4}+\left(\frac{1}{4}\right)^{2}\right)\times 3}-13
Express 2\times \frac{2}{3} as a single fraction.
\frac{\frac{847}{18}}{\left(\frac{4}{9}+\frac{4}{3}\times \frac{1}{4}+\left(\frac{1}{4}\right)^{2}\right)\times 3}-13
Multiply 2 and 2 to get 4.
\frac{\frac{847}{18}}{\left(\frac{4}{9}+\frac{4\times 1}{3\times 4}+\left(\frac{1}{4}\right)^{2}\right)\times 3}-13
Multiply \frac{4}{3} times \frac{1}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{847}{18}}{\left(\frac{4}{9}+\frac{1}{3}+\left(\frac{1}{4}\right)^{2}\right)\times 3}-13
Cancel out 4 in both numerator and denominator.
\frac{\frac{847}{18}}{\left(\frac{4}{9}+\frac{3}{9}+\left(\frac{1}{4}\right)^{2}\right)\times 3}-13
Least common multiple of 9 and 3 is 9. Convert \frac{4}{9} and \frac{1}{3} to fractions with denominator 9.
\frac{\frac{847}{18}}{\left(\frac{4+3}{9}+\left(\frac{1}{4}\right)^{2}\right)\times 3}-13
Since \frac{4}{9} and \frac{3}{9} have the same denominator, add them by adding their numerators.
\frac{\frac{847}{18}}{\left(\frac{7}{9}+\left(\frac{1}{4}\right)^{2}\right)\times 3}-13
Add 4 and 3 to get 7.
\frac{\frac{847}{18}}{\left(\frac{7}{9}+\frac{1}{16}\right)\times 3}-13
Calculate \frac{1}{4} to the power of 2 and get \frac{1}{16}.
\frac{\frac{847}{18}}{\left(\frac{112}{144}+\frac{9}{144}\right)\times 3}-13
Least common multiple of 9 and 16 is 144. Convert \frac{7}{9} and \frac{1}{16} to fractions with denominator 144.
\frac{\frac{847}{18}}{\frac{112+9}{144}\times 3}-13
Since \frac{112}{144} and \frac{9}{144} have the same denominator, add them by adding their numerators.
\frac{\frac{847}{18}}{\frac{121}{144}\times 3}-13
Add 112 and 9 to get 121.
\frac{\frac{847}{18}}{\frac{121\times 3}{144}}-13
Express \frac{121}{144}\times 3 as a single fraction.
\frac{\frac{847}{18}}{\frac{363}{144}}-13
Multiply 121 and 3 to get 363.
\frac{\frac{847}{18}}{\frac{121}{48}}-13
Reduce the fraction \frac{363}{144} to lowest terms by extracting and canceling out 3.
\frac{847}{18}\times \frac{48}{121}-13
Divide \frac{847}{18} by \frac{121}{48} by multiplying \frac{847}{18} by the reciprocal of \frac{121}{48}.
\frac{847\times 48}{18\times 121}-13
Multiply \frac{847}{18} times \frac{48}{121} by multiplying numerator times numerator and denominator times denominator.
\frac{40656}{2178}-13
Do the multiplications in the fraction \frac{847\times 48}{18\times 121}.
\frac{56}{3}-13
Reduce the fraction \frac{40656}{2178} to lowest terms by extracting and canceling out 726.
\frac{56}{3}-\frac{39}{3}
Convert 13 to fraction \frac{39}{3}.
\frac{56-39}{3}
Since \frac{56}{3} and \frac{39}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{17}{3}
Subtract 39 from 56 to get 17.