Evaluate
\frac{1}{a^{12}}
Expand
\frac{1}{a^{12}}
Share
Copied to clipboard
\frac{\left(a^{-1}\times \left(\frac{1}{a}\right)^{3}\right)^{2}}{\left(\frac{1}{a}\right)^{-2}a^{2}}
To multiply powers of the same base, add their exponents. Add 2 and -3 to get -1.
\frac{\left(a^{-1}\times \frac{1^{3}}{a^{3}}\right)^{2}}{\left(\frac{1}{a}\right)^{-2}a^{2}}
To raise \frac{1}{a} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(\frac{a^{-1}\times 1^{3}}{a^{3}}\right)^{2}}{\left(\frac{1}{a}\right)^{-2}a^{2}}
Express a^{-1}\times \frac{1^{3}}{a^{3}} as a single fraction.
\frac{\left(\frac{1^{3}}{a^{4}}\right)^{2}}{\left(\frac{1}{a}\right)^{-2}a^{2}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{\frac{\left(1^{3}\right)^{2}}{\left(a^{4}\right)^{2}}}{\left(\frac{1}{a}\right)^{-2}a^{2}}
To raise \frac{1^{3}}{a^{4}} to a power, raise both numerator and denominator to the power and then divide.
\frac{\frac{\left(1^{3}\right)^{2}}{\left(a^{4}\right)^{2}}}{\frac{1^{-2}}{a^{-2}}a^{2}}
To raise \frac{1}{a} to a power, raise both numerator and denominator to the power and then divide.
\frac{\frac{\left(1^{3}\right)^{2}}{\left(a^{4}\right)^{2}}}{\frac{1^{-2}a^{2}}{a^{-2}}}
Express \frac{1^{-2}}{a^{-2}}a^{2} as a single fraction.
\frac{\frac{\left(1^{3}\right)^{2}}{\left(a^{4}\right)^{2}}}{1^{-2}a^{4}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\frac{1^{6}}{\left(a^{4}\right)^{2}}}{1^{-2}a^{4}}
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
\frac{\frac{1^{6}}{a^{8}}}{1^{-2}a^{4}}
To raise a power to another power, multiply the exponents. Multiply 4 and 2 to get 8.
\frac{\frac{1}{a^{8}}}{1^{-2}a^{4}}
Calculate 1 to the power of 6 and get 1.
\frac{\frac{1}{a^{8}}}{1a^{4}}
Calculate 1 to the power of -2 and get 1.
\frac{1}{a^{8}\times 1a^{4}}
Express \frac{\frac{1}{a^{8}}}{1a^{4}} as a single fraction.
\frac{1}{a^{12}\times 1}
To multiply powers of the same base, add their exponents. Add 8 and 4 to get 12.
\frac{1}{a^{12}}
For any term t, t\times 1=t and 1t=t.
\frac{\left(a^{-1}\times \left(\frac{1}{a}\right)^{3}\right)^{2}}{\left(\frac{1}{a}\right)^{-2}a^{2}}
To multiply powers of the same base, add their exponents. Add 2 and -3 to get -1.
\frac{\left(a^{-1}\times \frac{1^{3}}{a^{3}}\right)^{2}}{\left(\frac{1}{a}\right)^{-2}a^{2}}
To raise \frac{1}{a} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(\frac{a^{-1}\times 1^{3}}{a^{3}}\right)^{2}}{\left(\frac{1}{a}\right)^{-2}a^{2}}
Express a^{-1}\times \frac{1^{3}}{a^{3}} as a single fraction.
\frac{\left(\frac{1^{3}}{a^{4}}\right)^{2}}{\left(\frac{1}{a}\right)^{-2}a^{2}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{\frac{\left(1^{3}\right)^{2}}{\left(a^{4}\right)^{2}}}{\left(\frac{1}{a}\right)^{-2}a^{2}}
To raise \frac{1^{3}}{a^{4}} to a power, raise both numerator and denominator to the power and then divide.
\frac{\frac{\left(1^{3}\right)^{2}}{\left(a^{4}\right)^{2}}}{\frac{1^{-2}}{a^{-2}}a^{2}}
To raise \frac{1}{a} to a power, raise both numerator and denominator to the power and then divide.
\frac{\frac{\left(1^{3}\right)^{2}}{\left(a^{4}\right)^{2}}}{\frac{1^{-2}a^{2}}{a^{-2}}}
Express \frac{1^{-2}}{a^{-2}}a^{2} as a single fraction.
\frac{\frac{\left(1^{3}\right)^{2}}{\left(a^{4}\right)^{2}}}{1^{-2}a^{4}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\frac{1^{6}}{\left(a^{4}\right)^{2}}}{1^{-2}a^{4}}
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
\frac{\frac{1^{6}}{a^{8}}}{1^{-2}a^{4}}
To raise a power to another power, multiply the exponents. Multiply 4 and 2 to get 8.
\frac{\frac{1}{a^{8}}}{1^{-2}a^{4}}
Calculate 1 to the power of 6 and get 1.
\frac{\frac{1}{a^{8}}}{1a^{4}}
Calculate 1 to the power of -2 and get 1.
\frac{1}{a^{8}\times 1a^{4}}
Express \frac{\frac{1}{a^{8}}}{1a^{4}} as a single fraction.
\frac{1}{a^{12}\times 1}
To multiply powers of the same base, add their exponents. Add 8 and 4 to get 12.
\frac{1}{a^{12}}
For any term t, t\times 1=t and 1t=t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}