Evaluate
6561
Factor
3^{8}
Share
Copied to clipboard
\frac{\left(3^{3}\left(-3\right)^{3}\left(-3\right)^{2}\right)^{2}}{\left(3\left(-3\right)\right)^{4}}
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\frac{\left(3^{3}\left(-3\right)^{5}\right)^{2}}{\left(3\left(-3\right)\right)^{4}}
To multiply powers of the same base, add their exponents. Add 3 and 2 to get 5.
\frac{\left(27\left(-3\right)^{5}\right)^{2}}{\left(3\left(-3\right)\right)^{4}}
Calculate 3 to the power of 3 and get 27.
\frac{\left(27\left(-243\right)\right)^{2}}{\left(3\left(-3\right)\right)^{4}}
Calculate -3 to the power of 5 and get -243.
\frac{\left(-6561\right)^{2}}{\left(3\left(-3\right)\right)^{4}}
Multiply 27 and -243 to get -6561.
\frac{43046721}{\left(3\left(-3\right)\right)^{4}}
Calculate -6561 to the power of 2 and get 43046721.
\frac{43046721}{\left(-9\right)^{4}}
Multiply 3 and -3 to get -9.
\frac{43046721}{6561}
Calculate -9 to the power of 4 and get 6561.
6561
Divide 43046721 by 6561 to get 6561.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}