Solve for x
x=\frac{2\sqrt{2}+1}{5}\approx 0.765685425
x=\frac{1-2\sqrt{2}}{5}\approx -0.365685425
Graph
Share
Copied to clipboard
\left(-50x+5\right)^{2}=125\left(10x^{2}+3\right)
Multiply both sides of the equation by 5\left(10x^{2}+3\right).
2500x^{2}-500x+25=125\left(10x^{2}+3\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-50x+5\right)^{2}.
2500x^{2}-500x+25=1250x^{2}+375
Use the distributive property to multiply 125 by 10x^{2}+3.
2500x^{2}-500x+25-1250x^{2}=375
Subtract 1250x^{2} from both sides.
1250x^{2}-500x+25=375
Combine 2500x^{2} and -1250x^{2} to get 1250x^{2}.
1250x^{2}-500x+25-375=0
Subtract 375 from both sides.
1250x^{2}-500x-350=0
Subtract 375 from 25 to get -350.
x=\frac{-\left(-500\right)±\sqrt{\left(-500\right)^{2}-4\times 1250\left(-350\right)}}{2\times 1250}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1250 for a, -500 for b, and -350 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-500\right)±\sqrt{250000-4\times 1250\left(-350\right)}}{2\times 1250}
Square -500.
x=\frac{-\left(-500\right)±\sqrt{250000-5000\left(-350\right)}}{2\times 1250}
Multiply -4 times 1250.
x=\frac{-\left(-500\right)±\sqrt{250000+1750000}}{2\times 1250}
Multiply -5000 times -350.
x=\frac{-\left(-500\right)±\sqrt{2000000}}{2\times 1250}
Add 250000 to 1750000.
x=\frac{-\left(-500\right)±1000\sqrt{2}}{2\times 1250}
Take the square root of 2000000.
x=\frac{500±1000\sqrt{2}}{2\times 1250}
The opposite of -500 is 500.
x=\frac{500±1000\sqrt{2}}{2500}
Multiply 2 times 1250.
x=\frac{1000\sqrt{2}+500}{2500}
Now solve the equation x=\frac{500±1000\sqrt{2}}{2500} when ± is plus. Add 500 to 1000\sqrt{2}.
x=\frac{2\sqrt{2}+1}{5}
Divide 1000\sqrt{2}+500 by 2500.
x=\frac{500-1000\sqrt{2}}{2500}
Now solve the equation x=\frac{500±1000\sqrt{2}}{2500} when ± is minus. Subtract 1000\sqrt{2} from 500.
x=\frac{1-2\sqrt{2}}{5}
Divide 500-1000\sqrt{2} by 2500.
x=\frac{2\sqrt{2}+1}{5} x=\frac{1-2\sqrt{2}}{5}
The equation is now solved.
\left(-50x+5\right)^{2}=125\left(10x^{2}+3\right)
Multiply both sides of the equation by 5\left(10x^{2}+3\right).
2500x^{2}-500x+25=125\left(10x^{2}+3\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-50x+5\right)^{2}.
2500x^{2}-500x+25=1250x^{2}+375
Use the distributive property to multiply 125 by 10x^{2}+3.
2500x^{2}-500x+25-1250x^{2}=375
Subtract 1250x^{2} from both sides.
1250x^{2}-500x+25=375
Combine 2500x^{2} and -1250x^{2} to get 1250x^{2}.
1250x^{2}-500x=375-25
Subtract 25 from both sides.
1250x^{2}-500x=350
Subtract 25 from 375 to get 350.
\frac{1250x^{2}-500x}{1250}=\frac{350}{1250}
Divide both sides by 1250.
x^{2}+\left(-\frac{500}{1250}\right)x=\frac{350}{1250}
Dividing by 1250 undoes the multiplication by 1250.
x^{2}-\frac{2}{5}x=\frac{350}{1250}
Reduce the fraction \frac{-500}{1250} to lowest terms by extracting and canceling out 250.
x^{2}-\frac{2}{5}x=\frac{7}{25}
Reduce the fraction \frac{350}{1250} to lowest terms by extracting and canceling out 50.
x^{2}-\frac{2}{5}x+\left(-\frac{1}{5}\right)^{2}=\frac{7}{25}+\left(-\frac{1}{5}\right)^{2}
Divide -\frac{2}{5}, the coefficient of the x term, by 2 to get -\frac{1}{5}. Then add the square of -\frac{1}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{2}{5}x+\frac{1}{25}=\frac{7+1}{25}
Square -\frac{1}{5} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{2}{5}x+\frac{1}{25}=\frac{8}{25}
Add \frac{7}{25} to \frac{1}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{5}\right)^{2}=\frac{8}{25}
Factor x^{2}-\frac{2}{5}x+\frac{1}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{5}\right)^{2}}=\sqrt{\frac{8}{25}}
Take the square root of both sides of the equation.
x-\frac{1}{5}=\frac{2\sqrt{2}}{5} x-\frac{1}{5}=-\frac{2\sqrt{2}}{5}
Simplify.
x=\frac{2\sqrt{2}+1}{5} x=\frac{1-2\sqrt{2}}{5}
Add \frac{1}{5} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}