Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(\frac{2\sqrt{6}t}{3\left(t^{2}+2\right)}\right)^{2}+\frac{8}{3\left(t^{2}+2\right)}}{\left(1+t^{2}\right)\left(-\frac{4}{3\left(t^{2}+2\right)}\right)^{2}}
Calculate -\frac{2\sqrt{6}t}{3\left(t^{2}+2\right)} to the power of 2 and get \left(\frac{2\sqrt{6}t}{3\left(t^{2}+2\right)}\right)^{2}.
\frac{\left(\frac{2\sqrt{6}t}{3\left(t^{2}+2\right)}\right)^{2}+\frac{8}{3\left(t^{2}+2\right)}}{\left(1+t^{2}\right)\times \left(\frac{4}{3\left(t^{2}+2\right)}\right)^{2}}
Calculate -\frac{4}{3\left(t^{2}+2\right)} to the power of 2 and get \left(\frac{4}{3\left(t^{2}+2\right)}\right)^{2}.
\frac{\frac{\left(2\sqrt{6}t\right)^{2}}{\left(3\left(t^{2}+2\right)\right)^{2}}+\frac{8}{3\left(t^{2}+2\right)}}{\left(1+t^{2}\right)\times \left(\frac{4}{3\left(t^{2}+2\right)}\right)^{2}}
To raise \frac{2\sqrt{6}t}{3\left(t^{2}+2\right)} to a power, raise both numerator and denominator to the power and then divide.
\frac{\frac{\left(2\sqrt{6}t\right)^{2}}{9\left(t^{2}+2\right)^{2}}+\frac{8\times 3\left(t^{2}+2\right)}{9\left(t^{2}+2\right)^{2}}}{\left(1+t^{2}\right)\times \left(\frac{4}{3\left(t^{2}+2\right)}\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(3\left(t^{2}+2\right)\right)^{2} and 3\left(t^{2}+2\right) is 9\left(t^{2}+2\right)^{2}. Multiply \frac{8}{3\left(t^{2}+2\right)} times \frac{3\left(t^{2}+2\right)}{3\left(t^{2}+2\right)}.
\frac{\frac{\left(2\sqrt{6}t\right)^{2}+8\times 3\left(t^{2}+2\right)}{9\left(t^{2}+2\right)^{2}}}{\left(1+t^{2}\right)\times \left(\frac{4}{3\left(t^{2}+2\right)}\right)^{2}}
Since \frac{\left(2\sqrt{6}t\right)^{2}}{9\left(t^{2}+2\right)^{2}} and \frac{8\times 3\left(t^{2}+2\right)}{9\left(t^{2}+2\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{\frac{\left(2\sqrt{6}t\right)^{2}+8\times 3\left(t^{2}+2\right)}{9\left(t^{2}+2\right)^{2}}}{\left(1+t^{2}\right)\times \frac{4^{2}}{\left(3\left(t^{2}+2\right)\right)^{2}}}
To raise \frac{4}{3\left(t^{2}+2\right)} to a power, raise both numerator and denominator to the power and then divide.
\frac{\frac{\left(2\sqrt{6}t\right)^{2}+8\times 3\left(t^{2}+2\right)}{9\left(t^{2}+2\right)^{2}}}{\frac{\left(1+t^{2}\right)\times 4^{2}}{\left(3\left(t^{2}+2\right)\right)^{2}}}
Express \left(1+t^{2}\right)\times \frac{4^{2}}{\left(3\left(t^{2}+2\right)\right)^{2}} as a single fraction.
\frac{\left(\left(2\sqrt{6}t\right)^{2}+8\times 3\left(t^{2}+2\right)\right)\times \left(3\left(t^{2}+2\right)\right)^{2}}{9\left(t^{2}+2\right)^{2}\left(1+t^{2}\right)\times 4^{2}}
Divide \frac{\left(2\sqrt{6}t\right)^{2}+8\times 3\left(t^{2}+2\right)}{9\left(t^{2}+2\right)^{2}} by \frac{\left(1+t^{2}\right)\times 4^{2}}{\left(3\left(t^{2}+2\right)\right)^{2}} by multiplying \frac{\left(2\sqrt{6}t\right)^{2}+8\times 3\left(t^{2}+2\right)}{9\left(t^{2}+2\right)^{2}} by the reciprocal of \frac{\left(1+t^{2}\right)\times 4^{2}}{\left(3\left(t^{2}+2\right)\right)^{2}}.
\frac{4\times 12\left(t^{2}+1\right)\times \left(3\left(t^{2}+2\right)\right)^{2}}{9\times 4^{2}\left(t^{2}+1\right)\left(t^{2}+2\right)^{2}}
Factor the expressions that are not already factored.
\frac{\left(3\left(t^{2}+2\right)\right)^{2}}{3\left(t^{2}+2\right)^{2}}
Cancel out 3\times 4\times 4\left(t^{2}+1\right) in both numerator and denominator.
\frac{9t^{4}+36t^{2}+36}{3t^{4}+12t^{2}+12}
Expand the expression.
\frac{9\left(t^{2}+2\right)^{2}}{3\left(t^{2}+2\right)^{2}}
Factor the expressions that are not already factored.
3
Cancel out 3\left(t^{2}+2\right)^{2} in both numerator and denominator.