Solve for n
n = \frac{\sqrt{2217} - 7}{2} \approx 20.042514734
n=\frac{-\sqrt{2217}-7}{2}\approx -27.042514734
Quiz
Quadratic Equation
5 problems similar to:
\frac { [ ( 2 \times 40 ) + ( n - 1 ) 10 ] n } { 2 } = 2710
Share
Copied to clipboard
\left(2\times 40+\left(n-1\right)\times 10\right)n=2710\times 2
Multiply both sides by 2.
\left(80+\left(n-1\right)\times 10\right)n=2710\times 2
Multiply 2 and 40 to get 80.
\left(80+10n-10\right)n=2710\times 2
Use the distributive property to multiply n-1 by 10.
\left(70+10n\right)n=2710\times 2
Subtract 10 from 80 to get 70.
70n+10n^{2}=2710\times 2
Use the distributive property to multiply 70+10n by n.
70n+10n^{2}=5420
Multiply 2710 and 2 to get 5420.
70n+10n^{2}-5420=0
Subtract 5420 from both sides.
10n^{2}+70n-5420=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
n=\frac{-70±\sqrt{70^{2}-4\times 10\left(-5420\right)}}{2\times 10}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 10 for a, 70 for b, and -5420 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-70±\sqrt{4900-4\times 10\left(-5420\right)}}{2\times 10}
Square 70.
n=\frac{-70±\sqrt{4900-40\left(-5420\right)}}{2\times 10}
Multiply -4 times 10.
n=\frac{-70±\sqrt{4900+216800}}{2\times 10}
Multiply -40 times -5420.
n=\frac{-70±\sqrt{221700}}{2\times 10}
Add 4900 to 216800.
n=\frac{-70±10\sqrt{2217}}{2\times 10}
Take the square root of 221700.
n=\frac{-70±10\sqrt{2217}}{20}
Multiply 2 times 10.
n=\frac{10\sqrt{2217}-70}{20}
Now solve the equation n=\frac{-70±10\sqrt{2217}}{20} when ± is plus. Add -70 to 10\sqrt{2217}.
n=\frac{\sqrt{2217}-7}{2}
Divide -70+10\sqrt{2217} by 20.
n=\frac{-10\sqrt{2217}-70}{20}
Now solve the equation n=\frac{-70±10\sqrt{2217}}{20} when ± is minus. Subtract 10\sqrt{2217} from -70.
n=\frac{-\sqrt{2217}-7}{2}
Divide -70-10\sqrt{2217} by 20.
n=\frac{\sqrt{2217}-7}{2} n=\frac{-\sqrt{2217}-7}{2}
The equation is now solved.
\left(2\times 40+\left(n-1\right)\times 10\right)n=2710\times 2
Multiply both sides by 2.
\left(80+\left(n-1\right)\times 10\right)n=2710\times 2
Multiply 2 and 40 to get 80.
\left(80+10n-10\right)n=2710\times 2
Use the distributive property to multiply n-1 by 10.
\left(70+10n\right)n=2710\times 2
Subtract 10 from 80 to get 70.
70n+10n^{2}=2710\times 2
Use the distributive property to multiply 70+10n by n.
70n+10n^{2}=5420
Multiply 2710 and 2 to get 5420.
10n^{2}+70n=5420
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{10n^{2}+70n}{10}=\frac{5420}{10}
Divide both sides by 10.
n^{2}+\frac{70}{10}n=\frac{5420}{10}
Dividing by 10 undoes the multiplication by 10.
n^{2}+7n=\frac{5420}{10}
Divide 70 by 10.
n^{2}+7n=542
Divide 5420 by 10.
n^{2}+7n+\left(\frac{7}{2}\right)^{2}=542+\left(\frac{7}{2}\right)^{2}
Divide 7, the coefficient of the x term, by 2 to get \frac{7}{2}. Then add the square of \frac{7}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}+7n+\frac{49}{4}=542+\frac{49}{4}
Square \frac{7}{2} by squaring both the numerator and the denominator of the fraction.
n^{2}+7n+\frac{49}{4}=\frac{2217}{4}
Add 542 to \frac{49}{4}.
\left(n+\frac{7}{2}\right)^{2}=\frac{2217}{4}
Factor n^{2}+7n+\frac{49}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n+\frac{7}{2}\right)^{2}}=\sqrt{\frac{2217}{4}}
Take the square root of both sides of the equation.
n+\frac{7}{2}=\frac{\sqrt{2217}}{2} n+\frac{7}{2}=-\frac{\sqrt{2217}}{2}
Simplify.
n=\frac{\sqrt{2217}-7}{2} n=\frac{-\sqrt{2217}-7}{2}
Subtract \frac{7}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}