Evaluate
-\frac{18}{25}=-0.72
Factor
-\frac{18}{25} = -0.72
Share
Copied to clipboard
\frac{\frac{2\times 4}{5\times 3}-\left(\frac{1}{3}+2\right)}{1+3\times \frac{1}{2}}
Multiply \frac{2}{5} times \frac{4}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{8}{15}-\left(\frac{1}{3}+2\right)}{1+3\times \frac{1}{2}}
Do the multiplications in the fraction \frac{2\times 4}{5\times 3}.
\frac{\frac{8}{15}-\left(\frac{1}{3}+\frac{6}{3}\right)}{1+3\times \frac{1}{2}}
Convert 2 to fraction \frac{6}{3}.
\frac{\frac{8}{15}-\frac{1+6}{3}}{1+3\times \frac{1}{2}}
Since \frac{1}{3} and \frac{6}{3} have the same denominator, add them by adding their numerators.
\frac{\frac{8}{15}-\frac{7}{3}}{1+3\times \frac{1}{2}}
Add 1 and 6 to get 7.
\frac{\frac{8}{15}-\frac{35}{15}}{1+3\times \frac{1}{2}}
Least common multiple of 15 and 3 is 15. Convert \frac{8}{15} and \frac{7}{3} to fractions with denominator 15.
\frac{\frac{8-35}{15}}{1+3\times \frac{1}{2}}
Since \frac{8}{15} and \frac{35}{15} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{-27}{15}}{1+3\times \frac{1}{2}}
Subtract 35 from 8 to get -27.
\frac{-\frac{9}{5}}{1+3\times \frac{1}{2}}
Reduce the fraction \frac{-27}{15} to lowest terms by extracting and canceling out 3.
\frac{-\frac{9}{5}}{1+\frac{3}{2}}
Multiply 3 and \frac{1}{2} to get \frac{3}{2}.
\frac{-\frac{9}{5}}{\frac{2}{2}+\frac{3}{2}}
Convert 1 to fraction \frac{2}{2}.
\frac{-\frac{9}{5}}{\frac{2+3}{2}}
Since \frac{2}{2} and \frac{3}{2} have the same denominator, add them by adding their numerators.
\frac{-\frac{9}{5}}{\frac{5}{2}}
Add 2 and 3 to get 5.
-\frac{9}{5}\times \frac{2}{5}
Divide -\frac{9}{5} by \frac{5}{2} by multiplying -\frac{9}{5} by the reciprocal of \frac{5}{2}.
\frac{-9\times 2}{5\times 5}
Multiply -\frac{9}{5} times \frac{2}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{-18}{25}
Do the multiplications in the fraction \frac{-9\times 2}{5\times 5}.
-\frac{18}{25}
Fraction \frac{-18}{25} can be rewritten as -\frac{18}{25} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}