Evaluate
-\frac{25}{2}=-12.5
Factor
-\frac{25}{2} = -12\frac{1}{2} = -12.5
Share
Copied to clipboard
\frac{\frac{\frac{3}{6}+\frac{2}{6}}{\frac{2}{3}-\frac{1}{2}}-\frac{4+\frac{1}{5}}{\frac{14}{5^{2}}}}{\sqrt{\frac{16}{25}}\times \left(\frac{1}{2}\right)^{2}}
Least common multiple of 2 and 3 is 6. Convert \frac{1}{2} and \frac{1}{3} to fractions with denominator 6.
\frac{\frac{\frac{3+2}{6}}{\frac{2}{3}-\frac{1}{2}}-\frac{4+\frac{1}{5}}{\frac{14}{5^{2}}}}{\sqrt{\frac{16}{25}}\times \left(\frac{1}{2}\right)^{2}}
Since \frac{3}{6} and \frac{2}{6} have the same denominator, add them by adding their numerators.
\frac{\frac{\frac{5}{6}}{\frac{2}{3}-\frac{1}{2}}-\frac{4+\frac{1}{5}}{\frac{14}{5^{2}}}}{\sqrt{\frac{16}{25}}\times \left(\frac{1}{2}\right)^{2}}
Add 3 and 2 to get 5.
\frac{\frac{\frac{5}{6}}{\frac{4}{6}-\frac{3}{6}}-\frac{4+\frac{1}{5}}{\frac{14}{5^{2}}}}{\sqrt{\frac{16}{25}}\times \left(\frac{1}{2}\right)^{2}}
Least common multiple of 3 and 2 is 6. Convert \frac{2}{3} and \frac{1}{2} to fractions with denominator 6.
\frac{\frac{\frac{5}{6}}{\frac{4-3}{6}}-\frac{4+\frac{1}{5}}{\frac{14}{5^{2}}}}{\sqrt{\frac{16}{25}}\times \left(\frac{1}{2}\right)^{2}}
Since \frac{4}{6} and \frac{3}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{\frac{5}{6}}{\frac{1}{6}}-\frac{4+\frac{1}{5}}{\frac{14}{5^{2}}}}{\sqrt{\frac{16}{25}}\times \left(\frac{1}{2}\right)^{2}}
Subtract 3 from 4 to get 1.
\frac{\frac{5}{6}\times 6-\frac{4+\frac{1}{5}}{\frac{14}{5^{2}}}}{\sqrt{\frac{16}{25}}\times \left(\frac{1}{2}\right)^{2}}
Divide \frac{5}{6} by \frac{1}{6} by multiplying \frac{5}{6} by the reciprocal of \frac{1}{6}.
\frac{5-\frac{4+\frac{1}{5}}{\frac{14}{5^{2}}}}{\sqrt{\frac{16}{25}}\times \left(\frac{1}{2}\right)^{2}}
Cancel out 6 and 6.
\frac{5-\frac{\frac{20}{5}+\frac{1}{5}}{\frac{14}{5^{2}}}}{\sqrt{\frac{16}{25}}\times \left(\frac{1}{2}\right)^{2}}
Convert 4 to fraction \frac{20}{5}.
\frac{5-\frac{\frac{20+1}{5}}{\frac{14}{5^{2}}}}{\sqrt{\frac{16}{25}}\times \left(\frac{1}{2}\right)^{2}}
Since \frac{20}{5} and \frac{1}{5} have the same denominator, add them by adding their numerators.
\frac{5-\frac{\frac{21}{5}}{\frac{14}{5^{2}}}}{\sqrt{\frac{16}{25}}\times \left(\frac{1}{2}\right)^{2}}
Add 20 and 1 to get 21.
\frac{5-\frac{\frac{21}{5}}{\frac{14}{25}}}{\sqrt{\frac{16}{25}}\times \left(\frac{1}{2}\right)^{2}}
Calculate 5 to the power of 2 and get 25.
\frac{5-\frac{21}{5}\times \frac{25}{14}}{\sqrt{\frac{16}{25}}\times \left(\frac{1}{2}\right)^{2}}
Divide \frac{21}{5} by \frac{14}{25} by multiplying \frac{21}{5} by the reciprocal of \frac{14}{25}.
\frac{5-\frac{21\times 25}{5\times 14}}{\sqrt{\frac{16}{25}}\times \left(\frac{1}{2}\right)^{2}}
Multiply \frac{21}{5} times \frac{25}{14} by multiplying numerator times numerator and denominator times denominator.
\frac{5-\frac{525}{70}}{\sqrt{\frac{16}{25}}\times \left(\frac{1}{2}\right)^{2}}
Do the multiplications in the fraction \frac{21\times 25}{5\times 14}.
\frac{5-\frac{15}{2}}{\sqrt{\frac{16}{25}}\times \left(\frac{1}{2}\right)^{2}}
Reduce the fraction \frac{525}{70} to lowest terms by extracting and canceling out 35.
\frac{\frac{10}{2}-\frac{15}{2}}{\sqrt{\frac{16}{25}}\times \left(\frac{1}{2}\right)^{2}}
Convert 5 to fraction \frac{10}{2}.
\frac{\frac{10-15}{2}}{\sqrt{\frac{16}{25}}\times \left(\frac{1}{2}\right)^{2}}
Since \frac{10}{2} and \frac{15}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{-\frac{5}{2}}{\sqrt{\frac{16}{25}}\times \left(\frac{1}{2}\right)^{2}}
Subtract 15 from 10 to get -5.
\frac{-\frac{5}{2}}{\frac{4}{5}\times \left(\frac{1}{2}\right)^{2}}
Rewrite the square root of the division \frac{16}{25} as the division of square roots \frac{\sqrt{16}}{\sqrt{25}}. Take the square root of both numerator and denominator.
\frac{-\frac{5}{2}}{\frac{4}{5}\times \frac{1}{4}}
Calculate \frac{1}{2} to the power of 2 and get \frac{1}{4}.
\frac{-\frac{5}{2}}{\frac{4\times 1}{5\times 4}}
Multiply \frac{4}{5} times \frac{1}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{-\frac{5}{2}}{\frac{1}{5}}
Cancel out 4 in both numerator and denominator.
-\frac{5}{2}\times 5
Divide -\frac{5}{2} by \frac{1}{5} by multiplying -\frac{5}{2} by the reciprocal of \frac{1}{5}.
\frac{-5\times 5}{2}
Express -\frac{5}{2}\times 5 as a single fraction.
\frac{-25}{2}
Multiply -5 and 5 to get -25.
-\frac{25}{2}
Fraction \frac{-25}{2} can be rewritten as -\frac{25}{2} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}