\frac { [ \cos ^ { - 1 } x \{ \sqrt { ( 1 - x ^ { 2 } ) } \} ] } { \log _ { e } \{ 1 + ( \frac { \sin ( 2 x \sqrt { ( 1 - x ^ { 2 } ) } ) } { \pi } ) \} } d x
Evaluate
\frac{dx\sqrt{1-x^{2}}\arccos(x)}{\ln(\sin(2x\sqrt{1-x^{2}})+\pi )-\ln(\pi )}
Differentiate w.r.t. x
\frac{d\left(-x\sqrt{1-x^{2}}\sin(2x\sqrt{1-x^{2}})\ln(\sin(2x\sqrt{1-x^{2}})+\pi )-2x^{2}\arccos(x)\sin(2x\sqrt{1-x^{2}})\ln(\sin(2x\sqrt{1-x^{2}})+\pi )+4\sqrt{1-x^{2}}x^{3}\arccos(x)\cos(2x\sqrt{1-x^{2}})+\arccos(x)\sin(2x\sqrt{1-x^{2}})\ln(\sin(2x\sqrt{1-x^{2}})+\pi )-2\pi x^{2}\arccos(x)\ln(\sin(2x\sqrt{1-x^{2}})+\pi )-2x\sqrt{1-x^{2}}\arccos(x)\cos(2x\sqrt{1-x^{2}})+2\ln(\pi )x^{2}\arccos(x)\sin(2x\sqrt{1-x^{2}})-\pi x\sqrt{1-x^{2}}\ln(\sin(2x\sqrt{1-x^{2}})+\pi )+\ln(\pi )x\sqrt{1-x^{2}}\sin(2x\sqrt{1-x^{2}})+\pi \arccos(x)\ln(\sin(2x\sqrt{1-x^{2}})+\pi )-\ln(\pi )\arccos(x)\sin(2x\sqrt{1-x^{2}})+2\pi \ln(\pi )x^{2}\arccos(x)-\pi \ln(\pi )\arccos(x)+\pi \ln(\pi )x\sqrt{1-x^{2}}\right)}{\sqrt{1-x^{2}}\left(\sin(2x\sqrt{1-x^{2}})+\pi \right)\left(\ln(\sin(2x\sqrt{1-x^{2}})+\pi )-\ln(\pi )\right)^{2}}
Share
Copied to clipboard
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}