Verify
false
Share
Copied to clipboard
\frac{7}{\frac{45\times 2}{15}-10.5}=6-10.5
Express 45\times \frac{2}{15} as a single fraction.
\frac{7}{\frac{90}{15}-10.5}=6-10.5
Multiply 45 and 2 to get 90.
\frac{7}{6-10.5}=6-10.5
Divide 90 by 15 to get 6.
\frac{7}{-4.5}=6-10.5
Subtract 10.5 from 6 to get -4.5.
\frac{70}{-45}=6-10.5
Expand \frac{7}{-4.5} by multiplying both numerator and the denominator by 10.
-\frac{14}{9}=6-10.5
Reduce the fraction \frac{70}{-45} to lowest terms by extracting and canceling out 5.
-\frac{14}{9}=-4.5
Subtract 10.5 from 6 to get -4.5.
-\frac{14}{9}=-\frac{9}{2}
Convert decimal number -4.5 to fraction -\frac{45}{10}. Reduce the fraction -\frac{45}{10} to lowest terms by extracting and canceling out 5.
-\frac{28}{18}=-\frac{81}{18}
Least common multiple of 9 and 2 is 18. Convert -\frac{14}{9} and -\frac{9}{2} to fractions with denominator 18.
\text{false}
Compare -\frac{28}{18} and -\frac{81}{18}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}