Solve for N_1
\left\{\begin{matrix}N_{1}=-\frac{N_{2}}{\eta -1}\text{, }&N_{2}\neq 0\text{ and }\eta \neq 1\\N_{1}\neq 0\text{, }&N_{2}=0\text{ and }\eta =1\end{matrix}\right.
Solve for N_2
N_{2}=N_{1}\left(1-\eta \right)
N_{1}\neq 0
Share
Copied to clipboard
\eta N_{1}=N_{1}-N_{2}
Variable N_{1} cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by N_{1}.
\eta N_{1}-N_{1}=-N_{2}
Subtract N_{1} from both sides.
\left(\eta -1\right)N_{1}=-N_{2}
Combine all terms containing N_{1}.
\frac{\left(\eta -1\right)N_{1}}{\eta -1}=-\frac{N_{2}}{\eta -1}
Divide both sides by \eta -1.
N_{1}=-\frac{N_{2}}{\eta -1}
Dividing by \eta -1 undoes the multiplication by \eta -1.
N_{1}=-\frac{N_{2}}{\eta -1}\text{, }N_{1}\neq 0
Variable N_{1} cannot be equal to 0.
\eta N_{1}=N_{1}-N_{2}
Multiply both sides of the equation by N_{1}.
N_{1}-N_{2}=\eta N_{1}
Swap sides so that all variable terms are on the left hand side.
-N_{2}=\eta N_{1}-N_{1}
Subtract N_{1} from both sides.
-N_{2}=N_{1}\eta -N_{1}
The equation is in standard form.
\frac{-N_{2}}{-1}=\frac{N_{1}\left(\eta -1\right)}{-1}
Divide both sides by -1.
N_{2}=\frac{N_{1}\left(\eta -1\right)}{-1}
Dividing by -1 undoes the multiplication by -1.
N_{2}=N_{1}-N_{1}\eta
Divide N_{1}\left(-1+\eta \right) by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}