Solve for D_1
\left\{\begin{matrix}D_{1}=\frac{D_{2}}{gℓ}\text{, }&D_{2}\neq 0\text{ and }g\neq 0\text{ and }ℓ\neq 0\\D_{1}\neq 0\text{, }&\left(ℓ=0\text{ or }g=0\right)\text{ and }D_{2}=0\end{matrix}\right.
Solve for D_2
D_{2}=D_{1}gℓ
D_{1}\neq 0
Share
Copied to clipboard
ℓgD_{1}=D_{2}
Variable D_{1} cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by D_{1}.
gℓD_{1}=D_{2}
The equation is in standard form.
\frac{gℓD_{1}}{gℓ}=\frac{D_{2}}{gℓ}
Divide both sides by ℓg.
D_{1}=\frac{D_{2}}{gℓ}
Dividing by ℓg undoes the multiplication by ℓg.
D_{1}=\frac{D_{2}}{gℓ}\text{, }D_{1}\neq 0
Variable D_{1} cannot be equal to 0.
ℓgD_{1}=D_{2}
Multiply both sides of the equation by D_{1}.
D_{2}=ℓgD_{1}
Swap sides so that all variable terms are on the left hand side.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}