Skip to main content
Solve for y
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\delta y\left(\delta +1\right)^{3}x^{6}=x^{3}-\left(x+\delta x\right)^{3}
Multiply both sides of the equation by \left(\delta +1\right)^{3}x^{6}.
\delta y\left(\delta ^{3}+3\delta ^{2}+3\delta +1\right)x^{6}=x^{3}-\left(x+\delta x\right)^{3}
Use binomial theorem \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} to expand \left(\delta +1\right)^{3}.
\left(y\delta ^{4}+3y\delta ^{3}+3y\delta ^{2}+\delta y\right)x^{6}=x^{3}-\left(x+\delta x\right)^{3}
Use the distributive property to multiply \delta y by \delta ^{3}+3\delta ^{2}+3\delta +1.
y\delta ^{4}x^{6}+3y\delta ^{3}x^{6}+3y\delta ^{2}x^{6}+\delta yx^{6}=x^{3}-\left(x+\delta x\right)^{3}
Use the distributive property to multiply y\delta ^{4}+3y\delta ^{3}+3y\delta ^{2}+\delta y by x^{6}.
y\delta ^{4}x^{6}+3y\delta ^{3}x^{6}+3y\delta ^{2}x^{6}+\delta yx^{6}=x^{3}-\left(x^{3}+3x^{2}\delta x+3x\delta ^{2}x^{2}+\delta ^{3}x^{3}\right)
Use binomial theorem \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} to expand \left(x+\delta x\right)^{3}.
y\delta ^{4}x^{6}+3y\delta ^{3}x^{6}+3y\delta ^{2}x^{6}+\delta yx^{6}=x^{3}-\left(x^{3}+3x^{3}\delta +3x\delta ^{2}x^{2}+\delta ^{3}x^{3}\right)
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
y\delta ^{4}x^{6}+3y\delta ^{3}x^{6}+3y\delta ^{2}x^{6}+\delta yx^{6}=x^{3}-\left(x^{3}+3x^{3}\delta +3x^{3}\delta ^{2}+\delta ^{3}x^{3}\right)
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
y\delta ^{4}x^{6}+3y\delta ^{3}x^{6}+3y\delta ^{2}x^{6}+\delta yx^{6}=x^{3}-x^{3}-3x^{3}\delta -3x^{3}\delta ^{2}-\delta ^{3}x^{3}
To find the opposite of x^{3}+3x^{3}\delta +3x^{3}\delta ^{2}+\delta ^{3}x^{3}, find the opposite of each term.
y\delta ^{4}x^{6}+3y\delta ^{3}x^{6}+3y\delta ^{2}x^{6}+\delta yx^{6}=-3x^{3}\delta -3x^{3}\delta ^{2}-\delta ^{3}x^{3}
Combine x^{3} and -x^{3} to get 0.
\left(\delta ^{4}x^{6}+3\delta ^{3}x^{6}+3\delta ^{2}x^{6}+\delta x^{6}\right)y=-3x^{3}\delta -3x^{3}\delta ^{2}-\delta ^{3}x^{3}
Combine all terms containing y.
\left(\delta ^{4}x^{6}+3\delta ^{3}x^{6}+3\delta ^{2}x^{6}+\delta x^{6}\right)y=-x^{3}\delta ^{3}-3\delta ^{2}x^{3}-3\delta x^{3}
The equation is in standard form.
\frac{\left(\delta ^{4}x^{6}+3\delta ^{3}x^{6}+3\delta ^{2}x^{6}+\delta x^{6}\right)y}{\delta ^{4}x^{6}+3\delta ^{3}x^{6}+3\delta ^{2}x^{6}+\delta x^{6}}=-\frac{\delta \left(\delta ^{2}+3\delta +3\right)x^{3}}{\delta ^{4}x^{6}+3\delta ^{3}x^{6}+3\delta ^{2}x^{6}+\delta x^{6}}
Divide both sides by \delta ^{4}x^{6}+3\delta ^{3}x^{6}+3\delta ^{2}x^{6}+\delta x^{6}.
y=-\frac{\delta \left(\delta ^{2}+3\delta +3\right)x^{3}}{\delta ^{4}x^{6}+3\delta ^{3}x^{6}+3\delta ^{2}x^{6}+\delta x^{6}}
Dividing by \delta ^{4}x^{6}+3\delta ^{3}x^{6}+3\delta ^{2}x^{6}+\delta x^{6} undoes the multiplication by \delta ^{4}x^{6}+3\delta ^{3}x^{6}+3\delta ^{2}x^{6}+\delta x^{6}.
y=-\frac{\delta ^{2}+3\delta +3}{\left(x\left(\delta +1\right)\right)^{3}}
Divide -\delta \left(3+3\delta +\delta ^{2}\right)x^{3} by \delta ^{4}x^{6}+3\delta ^{3}x^{6}+3\delta ^{2}x^{6}+\delta x^{6}.