Solve for y
\left\{\begin{matrix}y=-\frac{\delta ^{2}+3\delta +3}{\left(x\left(\delta +1\right)\right)^{3}}\text{, }&\delta \neq -1\text{ and }x\neq 0\\y\in \mathrm{R}\text{, }&x\neq 0\text{ and }\delta =0\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=-\frac{\sqrt[3]{\frac{\delta ^{2}+3\delta +3}{y}}}{\delta +1}\text{, }&\delta \neq -1\text{ and }y\neq 0\\x\neq 0\text{, }&\delta =0\end{matrix}\right.
Graph
Share
Copied to clipboard
\delta y\left(\delta +1\right)^{3}x^{6}=x^{3}-\left(x+\delta x\right)^{3}
Multiply both sides of the equation by \left(\delta +1\right)^{3}x^{6}.
\delta y\left(\delta ^{3}+3\delta ^{2}+3\delta +1\right)x^{6}=x^{3}-\left(x+\delta x\right)^{3}
Use binomial theorem \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} to expand \left(\delta +1\right)^{3}.
\left(y\delta ^{4}+3y\delta ^{3}+3y\delta ^{2}+\delta y\right)x^{6}=x^{3}-\left(x+\delta x\right)^{3}
Use the distributive property to multiply \delta y by \delta ^{3}+3\delta ^{2}+3\delta +1.
y\delta ^{4}x^{6}+3y\delta ^{3}x^{6}+3y\delta ^{2}x^{6}+\delta yx^{6}=x^{3}-\left(x+\delta x\right)^{3}
Use the distributive property to multiply y\delta ^{4}+3y\delta ^{3}+3y\delta ^{2}+\delta y by x^{6}.
y\delta ^{4}x^{6}+3y\delta ^{3}x^{6}+3y\delta ^{2}x^{6}+\delta yx^{6}=x^{3}-\left(x^{3}+3x^{2}\delta x+3x\delta ^{2}x^{2}+\delta ^{3}x^{3}\right)
Use binomial theorem \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} to expand \left(x+\delta x\right)^{3}.
y\delta ^{4}x^{6}+3y\delta ^{3}x^{6}+3y\delta ^{2}x^{6}+\delta yx^{6}=x^{3}-\left(x^{3}+3x^{3}\delta +3x\delta ^{2}x^{2}+\delta ^{3}x^{3}\right)
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
y\delta ^{4}x^{6}+3y\delta ^{3}x^{6}+3y\delta ^{2}x^{6}+\delta yx^{6}=x^{3}-\left(x^{3}+3x^{3}\delta +3x^{3}\delta ^{2}+\delta ^{3}x^{3}\right)
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
y\delta ^{4}x^{6}+3y\delta ^{3}x^{6}+3y\delta ^{2}x^{6}+\delta yx^{6}=x^{3}-x^{3}-3x^{3}\delta -3x^{3}\delta ^{2}-\delta ^{3}x^{3}
To find the opposite of x^{3}+3x^{3}\delta +3x^{3}\delta ^{2}+\delta ^{3}x^{3}, find the opposite of each term.
y\delta ^{4}x^{6}+3y\delta ^{3}x^{6}+3y\delta ^{2}x^{6}+\delta yx^{6}=-3x^{3}\delta -3x^{3}\delta ^{2}-\delta ^{3}x^{3}
Combine x^{3} and -x^{3} to get 0.
\left(\delta ^{4}x^{6}+3\delta ^{3}x^{6}+3\delta ^{2}x^{6}+\delta x^{6}\right)y=-3x^{3}\delta -3x^{3}\delta ^{2}-\delta ^{3}x^{3}
Combine all terms containing y.
\left(\delta ^{4}x^{6}+3\delta ^{3}x^{6}+3\delta ^{2}x^{6}+\delta x^{6}\right)y=-x^{3}\delta ^{3}-3\delta ^{2}x^{3}-3\delta x^{3}
The equation is in standard form.
\frac{\left(\delta ^{4}x^{6}+3\delta ^{3}x^{6}+3\delta ^{2}x^{6}+\delta x^{6}\right)y}{\delta ^{4}x^{6}+3\delta ^{3}x^{6}+3\delta ^{2}x^{6}+\delta x^{6}}=-\frac{\delta \left(\delta ^{2}+3\delta +3\right)x^{3}}{\delta ^{4}x^{6}+3\delta ^{3}x^{6}+3\delta ^{2}x^{6}+\delta x^{6}}
Divide both sides by \delta ^{4}x^{6}+3\delta ^{3}x^{6}+3\delta ^{2}x^{6}+\delta x^{6}.
y=-\frac{\delta \left(\delta ^{2}+3\delta +3\right)x^{3}}{\delta ^{4}x^{6}+3\delta ^{3}x^{6}+3\delta ^{2}x^{6}+\delta x^{6}}
Dividing by \delta ^{4}x^{6}+3\delta ^{3}x^{6}+3\delta ^{2}x^{6}+\delta x^{6} undoes the multiplication by \delta ^{4}x^{6}+3\delta ^{3}x^{6}+3\delta ^{2}x^{6}+\delta x^{6}.
y=-\frac{\delta ^{2}+3\delta +3}{\left(x\left(\delta +1\right)\right)^{3}}
Divide -\delta \left(3+3\delta +\delta ^{2}\right)x^{3} by \delta ^{4}x^{6}+3\delta ^{3}x^{6}+3\delta ^{2}x^{6}+\delta x^{6}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}