Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Share

\left(\frac{1}{\sin(A)}-\cot(A)\right)\left(\frac{1}{\sin(A)}+\cot(A)\right)
The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\frac{1-\cos(A)}{\sin(A)}
Consider \frac{1}{\sin(A)}-\cot(A). Factor out \frac{1}{\sin(A)}.
\frac{1+\cos(A)}{\sin(A)}
Consider \frac{1}{\sin(A)}+\cot(A). Factor out \frac{1}{\sin(A)}.
\left(1-\cos(A)\right)\left(1+\cos(A)\right)\times \left(\frac{1}{\sin(A)}\right)^{2}
Rewrite the complete factored expression.