Skip to main content
Differentiate w.r.t. α
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\left(-\left(\csc(-\alpha ^{1}+90)\right)^{2}\right)\frac{\mathrm{d}}{\mathrm{d}\alpha }(-\alpha ^{1}+90)
If F is the composition of two differentiable functions f\left(u\right) and u=g\left(x\right), that is, if F\left(x\right)=f\left(g\left(x\right)\right), then the derivative of F is the derivative of f with respect to u times the derivative of g with respect to x, that is, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
\left(-\left(\csc(-\alpha ^{1}+90)\right)^{2}\right)\left(-1\right)\alpha ^{1-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
\left(-\left(-1\right)\right)\left(\csc(-\alpha ^{1}+90)\right)^{2}
Simplify.
\left(-\left(-1\right)\right)\left(\csc(-\alpha +90)\right)^{2}
For any term t, t^{1}=t.