Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\cot(\theta )-\frac{1}{\sin(\theta )}\right)\left(\cot(\theta )+\frac{1}{\sin(\theta )}\right)
The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\frac{\cos(\theta )-1}{\sin(\theta )}
Consider \cot(\theta )-\frac{1}{\sin(\theta )}. Factor out \frac{1}{\sin(\theta )}.
\frac{\cos(\theta )+1}{\sin(\theta )}
Consider \cot(\theta )+\frac{1}{\sin(\theta )}. Factor out \frac{1}{\sin(\theta )}.
\left(\cos(\theta )-1\right)\left(\cos(\theta )+1\right)\times \left(\frac{1}{\sin(\theta )}\right)^{2}
Rewrite the complete factored expression.