\cos y = 0,036 x + 12.75 d y
Solve for d
\left\{\begin{matrix}d=\frac{4\left(\cos(y)-36x\right)}{51y}\text{, }&y\neq 0\\d\in \mathrm{R}\text{, }&x=\frac{1}{36}\text{ and }y=0\end{matrix}\right.
Solve for x
x=\frac{4\cos(y)-51dy}{144}
Graph
Share
Copied to clipboard
36x+12.75dy=\cos(y)
Swap sides so that all variable terms are on the left hand side.
12.75dy=\cos(y)-36x
Subtract 36x from both sides.
\frac{51y}{4}d=\cos(y)-36x
The equation is in standard form.
\frac{4\times \frac{51y}{4}d}{51y}=\frac{4\left(\cos(y)-36x\right)}{51y}
Divide both sides by 12.75y.
d=\frac{4\left(\cos(y)-36x\right)}{51y}
Dividing by 12.75y undoes the multiplication by 12.75y.
36x+12.75dy=\cos(y)
Swap sides so that all variable terms are on the left hand side.
36x=\cos(y)-12.75dy
Subtract 12.75dy from both sides.
36x=\cos(y)-\frac{51dy}{4}
The equation is in standard form.
\frac{36x}{36}=\frac{\cos(y)-\frac{51dy}{4}}{36}
Divide both sides by 36.
x=\frac{\cos(y)-\frac{51dy}{4}}{36}
Dividing by 36 undoes the multiplication by 36.
x=\frac{4\cos(y)-51dy}{144}
Divide \cos(y)-\frac{51dy}{4} by 36.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}