Solve for c (complex solution)
\left\{\begin{matrix}c=-\frac{\sqrt{2}\left(\left(-1+i\right)e^{iA}+\left(-1-i\right)e^{-iA}\right)}{4o}\text{, }&o\neq 0\\c\in \mathrm{C}\text{, }&\exists n_{1}\in \mathrm{Z}\text{ : }A=\pi n_{1}+\frac{3\pi }{4}\text{ and }o=0\end{matrix}\right.
Solve for c
\left\{\begin{matrix}c=\frac{\sin(\frac{4A+\pi }{4})}{o}\text{, }&o\neq 0\\c\in \mathrm{R}\text{, }&\exists n_{1}\in \mathrm{Z}\text{ : }A=\pi n_{1}+\frac{3\pi }{4}\text{ and }o=0\end{matrix}\right.
Solve for A (complex solution)
A=-i\ln(\left(\frac{1}{2}+\frac{1}{2}i\right)\sqrt{\left(co\right)^{2}-1}+\left(\frac{1}{2}+\frac{1}{2}i\right)co)+2\pi n_{1}-\frac{\ln(2)i}{2}\text{, }n_{1}\in \mathrm{Z}
A=-i\ln(\left(-1-i\right)\sqrt{\left(co\right)^{2}-1}+\left(1+i\right)co)+2\pi n_{2}+\frac{\ln(2)i}{2}\text{, }n_{2}\in \mathrm{Z}
Share
Copied to clipboard
\sqrt{2}co=\cos(A)+\sin(A)
Swap sides so that all variable terms are on the left hand side.
\sqrt{2}oc=\sin(A)+\cos(A)
The equation is in standard form.
\frac{\sqrt{2}oc}{\sqrt{2}o}=\frac{\sin(A)+\cos(A)}{\sqrt{2}o}
Divide both sides by \sqrt{2}o.
c=\frac{\sin(A)+\cos(A)}{\sqrt{2}o}
Dividing by \sqrt{2}o undoes the multiplication by \sqrt{2}o.
c=\frac{\sin(\frac{4A+\pi }{4})}{o}
Divide \cos(A)+\sin(A) by \sqrt{2}o.
\sqrt{2}co=\cos(A)+\sin(A)
Swap sides so that all variable terms are on the left hand side.
\sqrt{2}oc=\sin(A)+\cos(A)
The equation is in standard form.
\frac{\sqrt{2}oc}{\sqrt{2}o}=\frac{\sin(A)+\cos(A)}{\sqrt{2}o}
Divide both sides by \sqrt{2}o.
c=\frac{\sin(A)+\cos(A)}{\sqrt{2}o}
Dividing by \sqrt{2}o undoes the multiplication by \sqrt{2}o.
c=\frac{\sin(\frac{4A+\pi }{4})}{o}
Divide \cos(A)+\sin(A) by \sqrt{2}o.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}