Verify
true
Share
Copied to clipboard
0=1-2\left(\sin(45)\right)^{2}\text{ and }1-2\left(\sin(45)\right)^{2}=2\left(\cos(45)\right)^{2}-1
Get the value of \cos(90) from trigonometric values table.
0=1-2\times \left(\frac{\sqrt{2}}{2}\right)^{2}\text{ and }1-2\left(\sin(45)\right)^{2}=2\left(\cos(45)\right)^{2}-1
Get the value of \sin(45) from trigonometric values table.
0=1-2\times \frac{\left(\sqrt{2}\right)^{2}}{2^{2}}\text{ and }1-2\left(\sin(45)\right)^{2}=2\left(\cos(45)\right)^{2}-1
To raise \frac{\sqrt{2}}{2} to a power, raise both numerator and denominator to the power and then divide.
0=1-\frac{2\left(\sqrt{2}\right)^{2}}{2^{2}}\text{ and }1-2\left(\sin(45)\right)^{2}=2\left(\cos(45)\right)^{2}-1
Express 2\times \frac{\left(\sqrt{2}\right)^{2}}{2^{2}} as a single fraction.
0=1-\frac{\left(\sqrt{2}\right)^{2}}{2}\text{ and }1-2\left(\sin(45)\right)^{2}=2\left(\cos(45)\right)^{2}-1
Cancel out 2 in both numerator and denominator.
0=1-\frac{2}{2}\text{ and }1-2\left(\sin(45)\right)^{2}=2\left(\cos(45)\right)^{2}-1
The square of \sqrt{2} is 2.
0=1-1\text{ and }1-2\left(\sin(45)\right)^{2}=2\left(\cos(45)\right)^{2}-1
Divide 2 by 2 to get 1.
0=0\text{ and }1-2\left(\sin(45)\right)^{2}=2\left(\cos(45)\right)^{2}-1
Subtract 1 from 1 to get 0.
\text{true}\text{ and }1-2\left(\sin(45)\right)^{2}=2\left(\cos(45)\right)^{2}-1
Compare 0 and 0.
\text{true}\text{ and }1-2\times \left(\frac{\sqrt{2}}{2}\right)^{2}=2\left(\cos(45)\right)^{2}-1
Get the value of \sin(45) from trigonometric values table.
\text{true}\text{ and }1-2\times \frac{\left(\sqrt{2}\right)^{2}}{2^{2}}=2\left(\cos(45)\right)^{2}-1
To raise \frac{\sqrt{2}}{2} to a power, raise both numerator and denominator to the power and then divide.
\text{true}\text{ and }1-\frac{2\left(\sqrt{2}\right)^{2}}{2^{2}}=2\left(\cos(45)\right)^{2}-1
Express 2\times \frac{\left(\sqrt{2}\right)^{2}}{2^{2}} as a single fraction.
\text{true}\text{ and }1-\frac{\left(\sqrt{2}\right)^{2}}{2}=2\left(\cos(45)\right)^{2}-1
Cancel out 2 in both numerator and denominator.
\text{true}\text{ and }1-\frac{2}{2}=2\left(\cos(45)\right)^{2}-1
The square of \sqrt{2} is 2.
\text{true}\text{ and }1-1=2\left(\cos(45)\right)^{2}-1
Divide 2 by 2 to get 1.
\text{true}\text{ and }0=2\left(\cos(45)\right)^{2}-1
Subtract 1 from 1 to get 0.
\text{true}\text{ and }0=2\times \left(\frac{\sqrt{2}}{2}\right)^{2}-1
Get the value of \cos(45) from trigonometric values table.
\text{true}\text{ and }0=2\times \frac{\left(\sqrt{2}\right)^{2}}{2^{2}}-1
To raise \frac{\sqrt{2}}{2} to a power, raise both numerator and denominator to the power and then divide.
\text{true}\text{ and }0=\frac{2\left(\sqrt{2}\right)^{2}}{2^{2}}-1
Express 2\times \frac{\left(\sqrt{2}\right)^{2}}{2^{2}} as a single fraction.
\text{true}\text{ and }0=\frac{\left(\sqrt{2}\right)^{2}}{2}-1
Cancel out 2 in both numerator and denominator.
\text{true}\text{ and }0=\frac{\left(\sqrt{2}\right)^{2}}{2}-\frac{2}{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{2}{2}.
\text{true}\text{ and }0=\frac{\left(\sqrt{2}\right)^{2}-2}{2}
Since \frac{\left(\sqrt{2}\right)^{2}}{2} and \frac{2}{2} have the same denominator, subtract them by subtracting their numerators.
\text{true}\text{ and }0=\frac{2-2}{2}
The square of \sqrt{2} is 2.
\text{true}\text{ and }0=\frac{0}{2}
Subtract 2 from 2 to get 0.
\text{true}\text{ and }0=0
Zero divided by any non-zero number gives zero.
\text{true}\text{ and }\text{true}
Compare 0 and 0.
\text{true}
The conjunction of \text{true} and \text{true} is \text{true}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}