Skip to main content
Solve for x
Tick mark Image
Graph

Share

0.3420201433256688 = \frac{x ^ {2} + x ^ {2} - 10 ^ {2}}{2 {(x)} {(x)}}
Evaluate trigonometric functions in the problem
0.6840402866513376x^{2}=x^{2}+x^{2}-10^{2}
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 2x^{2}.
0.6840402866513376x^{2}=2x^{2}-10^{2}
Combine x^{2} and x^{2} to get 2x^{2}.
0.6840402866513376x^{2}=2x^{2}-100
Calculate 10 to the power of 2 and get 100.
0.6840402866513376x^{2}-2x^{2}=-100
Subtract 2x^{2} from both sides.
-1.3159597133486624x^{2}=-100
Combine 0.6840402866513376x^{2} and -2x^{2} to get -1.3159597133486624x^{2}.
x^{2}=\frac{-100}{-1.3159597133486624}
Divide both sides by -1.3159597133486624.
x^{2}=\frac{-1000000000000000000}{-13159597133486624}
Expand \frac{-100}{-1.3159597133486624} by multiplying both numerator and the denominator by 10000000000000000.
x^{2}=\frac{31250000000000000}{411237410421457}
Reduce the fraction \frac{-1000000000000000000}{-13159597133486624} to lowest terms by extracting and canceling out -32.
x=\frac{125000000\sqrt{822474820842914}}{411237410421457} x=-\frac{125000000\sqrt{822474820842914}}{411237410421457}
Take the square root of both sides of the equation.
0.3420201433256688 = \frac{x ^ {2} + x ^ {2} - 10 ^ {2}}{2 {(x)} {(x)}}
Evaluate trigonometric functions in the problem
0.6840402866513376x^{2}=x^{2}+x^{2}-10^{2}
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 2x^{2}.
0.6840402866513376x^{2}=2x^{2}-10^{2}
Combine x^{2} and x^{2} to get 2x^{2}.
0.6840402866513376x^{2}=2x^{2}-100
Calculate 10 to the power of 2 and get 100.
0.6840402866513376x^{2}-2x^{2}=-100
Subtract 2x^{2} from both sides.
-1.3159597133486624x^{2}=-100
Combine 0.6840402866513376x^{2} and -2x^{2} to get -1.3159597133486624x^{2}.
-1.3159597133486624x^{2}+100=0
Add 100 to both sides.
x=\frac{0±\sqrt{0^{2}-4\left(-1.3159597133486624\right)\times 100}}{2\left(-1.3159597133486624\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1.3159597133486624 for a, 0 for b, and 100 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-1.3159597133486624\right)\times 100}}{2\left(-1.3159597133486624\right)}
Square 0.
x=\frac{0±\sqrt{5.2638388533946496\times 100}}{2\left(-1.3159597133486624\right)}
Multiply -4 times -1.3159597133486624.
x=\frac{0±\sqrt{526.38388533946496}}{2\left(-1.3159597133486624\right)}
Multiply 5.2638388533946496 times 100.
x=\frac{0±\frac{\sqrt{822474820842914}}{1250000}}{2\left(-1.3159597133486624\right)}
Take the square root of 526.38388533946496.
x=\frac{0±\frac{\sqrt{822474820842914}}{1250000}}{-2.6319194266973248}
Multiply 2 times -1.3159597133486624.
x=-\frac{125000000\sqrt{822474820842914}}{411237410421457}
Now solve the equation x=\frac{0±\frac{\sqrt{822474820842914}}{1250000}}{-2.6319194266973248} when ± is plus.
x=\frac{125000000\sqrt{822474820842914}}{411237410421457}
Now solve the equation x=\frac{0±\frac{\sqrt{822474820842914}}{1250000}}{-2.6319194266973248} when ± is minus.
x=-\frac{125000000\sqrt{822474820842914}}{411237410421457} x=\frac{125000000\sqrt{822474820842914}}{411237410421457}
The equation is now solved.