Evaluate
-\frac{\sqrt{3}}{2}\approx -0.866025404
Share
Copied to clipboard
\cos(\frac{-5\pi }{6})
Express -5\times \frac{\pi }{6} as a single fraction.
\cos(\frac{\pi }{2}+\frac{\pi }{3})=\cos(\frac{\pi }{2})\cos(\frac{\pi }{3})-\sin(\frac{\pi }{3})\sin(\frac{\pi }{2})
Use \cos(x+y)=\cos(x)\cos(y)-\sin(y)\sin(x) where x=\frac{\pi }{2} and y=\frac{\pi }{3} to obtain the result.
0\cos(\frac{\pi }{3})-\sin(\frac{\pi }{3})\sin(\frac{\pi }{2})
Get the value of \cos(\frac{\pi }{2}) from trigonometric values table.
0\times \frac{1}{2}-\sin(\frac{\pi }{3})\sin(\frac{\pi }{2})
Get the value of \cos(\frac{\pi }{3}) from trigonometric values table.
0\times \frac{1}{2}-\frac{\sqrt{3}}{2}\sin(\frac{\pi }{2})
Get the value of \sin(\frac{\pi }{3}) from trigonometric values table.
0\times \frac{1}{2}-\frac{\sqrt{3}}{2}\times 1
Get the value of \sin(\frac{\pi }{2}) from trigonometric values table.
-\frac{\sqrt{3}}{2}
Do the calculations.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}