Evaluate
\frac{\sqrt{2}-\sqrt{6}}{4}\approx -0.258819045
Share
Copied to clipboard
\frac{\sqrt{2}}{2}\left(\sin(30)-\cos(30)\right)
Get the value of \cos(45) from trigonometric values table.
\frac{\sqrt{2}}{2}\left(\frac{1}{2}-\cos(30)\right)
Get the value of \sin(30) from trigonometric values table.
\frac{\sqrt{2}}{2}\left(\frac{1}{2}-\frac{\sqrt{3}}{2}\right)
Get the value of \cos(30) from trigonometric values table.
\frac{\sqrt{2}}{2}\times \frac{1+\sqrt{3}}{2}
Since \frac{1}{2} and \frac{\sqrt{3}}{2} have the same denominator, add them by adding their numerators.
\frac{\sqrt{2}\left(1+\sqrt{3}\right)}{2\times 2}
Multiply \frac{\sqrt{2}}{2} times \frac{1+\sqrt{3}}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{\sqrt{2}\left(1+\sqrt{3}\right)}{4}
Multiply 2 and 2 to get 4.
\frac{\sqrt{2}+\sqrt{2}\sqrt{3}}{4}
Use the distributive property to multiply \sqrt{2} by 1+\sqrt{3}.
\frac{\sqrt{2}+\sqrt{6}}{4}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}