Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\cos(\pi +\frac{\pi }{6})=\cos(\pi )\cos(\frac{\pi }{6})-\sin(\frac{\pi }{6})\sin(\pi )
Use \cos(x+y)=\cos(x)\cos(y)-\sin(y)\sin(x) where x=\pi and y=\frac{\pi }{6} to obtain the result.
-\cos(\frac{\pi }{6})-\sin(\frac{\pi }{6})\sin(\pi )
Get the value of \cos(\pi ) from trigonometric values table.
-\frac{\sqrt{3}}{2}-\sin(\frac{\pi }{6})\sin(\pi )
Get the value of \cos(\frac{\pi }{6}) from trigonometric values table.
-\frac{\sqrt{3}}{2}-\frac{1}{2}\sin(\pi )
Get the value of \sin(\frac{\pi }{6}) from trigonometric values table.
-\frac{\sqrt{3}}{2}-\frac{1}{2}\times 0
Get the value of \sin(\pi ) from trigonometric values table.
-\frac{\sqrt{3}}{2}
Do the calculations.