Evaluate
\frac{\sqrt{3}}{2}+2\approx 2.866025404
Share
Copied to clipboard
\frac{\sqrt{3}}{2}-\sqrt{2}\sin(\frac{\pi }{4})+\sqrt{3}\tan(\frac{\pi }{3})
Get the value of \cos(\frac{\pi }{6}) from trigonometric values table.
\frac{\sqrt{3}}{2}-\sqrt{2}\times \frac{\sqrt{2}}{2}+\sqrt{3}\tan(\frac{\pi }{3})
Get the value of \sin(\frac{\pi }{4}) from trigonometric values table.
\frac{\sqrt{3}}{2}-\frac{\sqrt{2}\sqrt{2}}{2}+\sqrt{3}\tan(\frac{\pi }{3})
Express \sqrt{2}\times \frac{\sqrt{2}}{2} as a single fraction.
\frac{\sqrt{3}}{2}-\frac{2}{2}+\sqrt{3}\tan(\frac{\pi }{3})
Multiply \sqrt{2} and \sqrt{2} to get 2.
\frac{\sqrt{3}-2}{2}+\sqrt{3}\tan(\frac{\pi }{3})
Since \frac{\sqrt{3}}{2} and \frac{2}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{\sqrt{3}-2}{2}+\sqrt{3}\sqrt{3}
Get the value of \tan(\frac{\pi }{3}) from trigonometric values table.
\frac{\sqrt{3}-2}{2}+3
Multiply \sqrt{3} and \sqrt{3} to get 3.
\frac{\sqrt{3}-2}{2}+\frac{3\times 2}{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{2}{2}.
\frac{\sqrt{3}-2+3\times 2}{2}
Since \frac{\sqrt{3}-2}{2} and \frac{3\times 2}{2} have the same denominator, add them by adding their numerators.
\frac{\sqrt{3}-2+6}{2}
Do the multiplications in \sqrt{3}-2+3\times 2.
\frac{\sqrt{3}+4}{2}
Do the calculations in \sqrt{3}-2+6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}