Solve for n
\left\{\begin{matrix}n=\frac{c}{\cos(\frac{x}{4})}\text{, }&c\neq 0\text{ and }\nexists n_{1}\in \mathrm{Z}\text{ : }x=4\pi n_{1}+2\pi \\n\neq 0\text{, }&\exists n_{1}\in \mathrm{Z}\text{ : }x=4\pi n_{1}+2\pi \text{ and }c=0\end{matrix}\right.
Solve for c
c=n\cos(\frac{x}{4})
n\neq 0
Graph
Share
Copied to clipboard
n\cos(\frac{x}{4})=c
Variable n cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by n.
\cos(\frac{x}{4})n=c
The equation is in standard form.
\frac{\cos(\frac{x}{4})n}{\cos(\frac{x}{4})}=\frac{c}{\cos(\frac{x}{4})}
Divide both sides by \cos(\frac{1}{4}x).
n=\frac{c}{\cos(\frac{x}{4})}
Dividing by \cos(\frac{1}{4}x) undoes the multiplication by \cos(\frac{1}{4}x).
n=\frac{c}{\cos(\frac{x}{4})}\text{, }n\neq 0
Variable n cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}