Evaluate
\frac{17}{6}\approx 2.833333333
Factor
\frac{17}{2 \cdot 3} = 2\frac{5}{6} = 2.8333333333333335
Share
Copied to clipboard
\frac{1}{2}-3\sin(\frac{3\pi }{2})+\frac{1}{3}\sin(\frac{\pi }{2})+\cos(\pi )
Get the value of \cos(\frac{\pi }{3}) from trigonometric values table.
\frac{1}{2}-3\left(-1\right)+\frac{1}{3}\sin(\frac{\pi }{2})+\cos(\pi )
Get the value of \sin(\frac{3\pi }{2}) from trigonometric values table.
\frac{1}{2}-\left(-3\right)+\frac{1}{3}\sin(\frac{\pi }{2})+\cos(\pi )
Multiply 3 and -1 to get -3.
\frac{1}{2}+3+\frac{1}{3}\sin(\frac{\pi }{2})+\cos(\pi )
The opposite of -3 is 3.
\frac{7}{2}+\frac{1}{3}\sin(\frac{\pi }{2})+\cos(\pi )
Add \frac{1}{2} and 3 to get \frac{7}{2}.
\frac{7}{2}+\frac{1}{3}\times 1+\cos(\pi )
Get the value of \sin(\frac{\pi }{2}) from trigonometric values table.
\frac{7}{2}+\frac{1}{3}+\cos(\pi )
Multiply \frac{1}{3} and 1 to get \frac{1}{3}.
\frac{23}{6}+\cos(\pi )
Add \frac{7}{2} and \frac{1}{3} to get \frac{23}{6}.
\frac{23}{6}-1
Get the value of \cos(\pi ) from trigonometric values table.
\frac{17}{6}
Subtract 1 from \frac{23}{6} to get \frac{17}{6}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}