Solve for g
g=\frac{6}{\sin(x)}-\sin(x)
\nexists n_{1}\in \mathrm{Z}\text{ : }x=\pi n_{1}
Graph
Share
Copied to clipboard
\left(\cos(x)\right)^{2}-g\sin(x)=-5
Subtract 5 from both sides. Anything subtracted from zero gives its negation.
-g\sin(x)=-5-\left(\cos(x)\right)^{2}
Subtract \left(\cos(x)\right)^{2} from both sides.
\left(-\sin(x)\right)g=-\left(\cos(x)\right)^{2}-5
The equation is in standard form.
\frac{\left(-\sin(x)\right)g}{-\sin(x)}=\frac{\left(\sin(x)\right)^{2}-6}{-\sin(x)}
Divide both sides by -\sin(x).
g=\frac{\left(\sin(x)\right)^{2}-6}{-\sin(x)}
Dividing by -\sin(x) undoes the multiplication by -\sin(x).
g=\frac{\left(\cos(x)\right)^{2}+5}{\sin(x)}
Divide -6+\left(\sin(x)\right)^{2} by -\sin(x).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}