Solve for d
\left\{\begin{matrix}d=\frac{i\left(\cos(2a)-1\right)}{2sv^{2}}\text{, }&v\neq 0\text{ and }s\neq 0\\d\in \mathrm{C}\text{, }&\left(\exists n_{1}\in \mathrm{Z}\text{ : }a=\pi n_{1}\text{ and }s=0\right)\text{ or }\left(\exists n_{1}\in \mathrm{Z}\text{ : }a=\pi n_{1}\text{ and }v=0\right)\end{matrix}\right.
Share
Copied to clipboard
siv^{2}d=1-\left(\cos(a)\right)^{2}
Subtract \left(\cos(a)\right)^{2} from both sides.
isv^{2}d=\left(\sin(a)\right)^{2}
The equation is in standard form.
\frac{isv^{2}d}{isv^{2}}=\frac{\left(\sin(a)\right)^{2}}{isv^{2}}
Divide both sides by isv^{2}.
d=\frac{\left(\sin(a)\right)^{2}}{isv^{2}}
Dividing by isv^{2} undoes the multiplication by isv^{2}.
d=-\frac{i\left(\sin(a)\right)^{2}}{sv^{2}}
Divide \left(\sin(a)\right)^{2} by isv^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}